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Biodiesel is a renewable fuel that can supplement petroleum fuel supply. A major 

deterrent to commercial biodiesel production from traditional feedstock like soybean, 

canola or rapeseed oils is the high cost of feedstock: 70 - 95% of total biodiesel 

production cost. Therefore, a relatively cheaper feedstock is needed to make the price of 

biodiesel cost-competitive with petroleum diesel. Activated sludge from wastewater 

treatment plants is a relatively cheaper feedstock and relatively easy to obtain. However, 

drying of this sludge prior to oil extraction is a major operating cost of this process, as 

high as 50% of biodiesel production cost. 

The goal of this research is to address this challenge by investigating the 

feasibility of using activated sludge from municipal wastewater for cost-efficient 

biodiesel production with little or no drying of the feedstock. First, the use of water-

tolerant catalysts for biodiesel production was investigated to determine the level of water 

tolerance of these catalysts for the case where the sludge could be dried to an extent.  The 

study investigated porous metal oxide and zeolite catalysts with tunable basicities, 

acidities and hydrophobicities and proposed a reaction mechanism for the most active 
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catalyst.  Next, the alternative where the catalysts were not very tolerant of moisture was 

considered, and the feasibility of a non-catalytic means of producing biodiesel from wet 

microbial media using supercritical methanol was also investigated. A model system of 

oleaginous yeast, Rhodotorula glutinis, was used to evaluate the production of biodiesel 

in a system similar to sludge. 

Since the non-catalytic method showed the highest tolerance for water at 90% 

moisture content, the optimum reaction conditions for highest FAME yields were 

determined.  Two methods of the non-catalytic process, 1-step and 2-step processes, that 

could produce high FAME yields were studied and compared in terms of FAME yields 

and kinetic rate constants. With these results, an economic analysis was performed to 

investigate the cost efficiency of both methods of the non-catalytic process and 

recommend one with great potential for producing biodiesel from activated sludge at a 

cost-competitive price. 
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Figure 1.1 World energy consumption Source 

(EIA 2012) 
*1 tonne of crude oil = 42 Giga Joules = 7.3 barrels of oil 

CHAPTER I 

INTRODUCTION 

1.1 World Energy Needs 

Energy is among the most important needs for daily survival in many parts of the 

world. It is one of the largest industries on the planet with total global annual energy 

consumption in 2011 being 12,275 billion tonnes of oil equivalent (BP 2012). Of this 

global energy consumption, oil was the leading fuel accounting for 33.1% (4059.1 

million tonnes), followed by coal at 30.3% as seen in Figure 1.1 below (BP 2012). 
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Figure 1.2 Projected increase in energy consumption (quadrillion Btu) by region till 
2035 Source 

(EIA 2012) 

  

The U.S. Department of Energy’s Energy Information Administration (EIA) 

projects that world energy consumption will increase by 47% from 2010 through 2035, 

based on the assumption that current laws and regulations remain unchanged throughout 

the projections shown in Figure 1.2 (EIA 2012). Most of this increase is attributed to 

robust economic growth which is usually accompanied by increased demand for energy. 

For example, countries like China and India are reported to account for half the growth in 

world energy use (EIA 2012). Thus, there is a great need to meet this growing demand 

with diverse supply options for reasons that include: availability and economic impact, 

environmental impact, and government regulations. 

1.1.1 Availability and economic impact 

Currently the world largely depends on fossil fuels like crude oil, as the 

predominant energy source for liquid transportation fuel. Of the total petroleum and other 

liquids consumption, the transportation sector accounted for 57 % in 2009 (OPEC 2012). 
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This number is expected to grow as the global population growth increases from 6.9 

billion in 2010 to 8.6 billion in 2035 (OPEC 2011). Corresponding with that population 

growth, the International Energy Agency (IEA) expects the world’s energy demand to 

increase by more than one-third over the period to 2035, with 60% by 2030 driven largely 

by growth of energy use and population in India, China and the Middle East (IEA 2012). 

In addition to this projected increase, the volatility in oil prices (Figure 1.3), often 

due to risks in the international financial system, natural disasters, and social unrest in 

different oil-producing parts of the world, indicates the need for countries to 

independently produce more of their own fuel supply locally for energy and economic 

security. While some countries like the U.S. have experienced a significant increase in 

onshore crude oil production (especially from shale and other tight formations) that puts 

them closer to energy independence, more important factors need to be addressed: 

sustainability and environmental impact. Furthermore, not every country is on the path to 

energy independence, and in most cases their economic growth will be accompanied by a 

parallel increase in transport and energy demand. Therefore, it is important to invest in 

diverse, sustainable energy sources in a timely manner to meet future energy demands for 

the economic and energy security of the country. 

3 
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Figure 1.3 Oil prices over the last 5 years 

(Source:(Oil-Price.net)) 

  

 

 

   

  

 

 

 

 

  

  

1.1.2 Environmental impact 

Unfortunately, utilization of fossil fuels is one of the main causes of 

environmental pollution. The combustion of these non-renewable fossil fuels emits 

excessive toxic greenhouse gases such as carbon monoxide (CO), carbon dioxide (CO2), 

sulfur dioxide (SO2), nitrogen oxide (NO) and nitrogen dioxide (NO2). These greenhouse 

gases cause the green house effect phenomenon as they trap heat in the atmosphere and 

subsequently cause global warming and acid rain (Tan and Lee 2011). Continued and 

increasing use of petroleum fuels will increase local air pollution and intensify the global 

warming problems caused by CO2 (Ma and Hanna 1999).  Thus, another important 

reason for investing in more renewable fuels: the positive environmental impact of the 

fuels. Renewable fuels like biodiesel are reported to be cleaner than the corresponding 

petroleum fuel, having less sulfur and generating less particulate matter. The 

environmental impacts span more than just the exhaust emissions of cars and can have 

far-reaching impacts on the health and economy of a nation. The need for a more 

environmental friendly fuel is clear. 
4 
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1.1.3 Government regulations 

Renewable fuels are an alternative to supplement conventional energy supply 

since individual countries can produce what they need and would not have to depend on 

unstable regions of the world for supply. Places like the U.S. and Europe recognize this 

need and have instituted mandates to boost renewable fuel supply. For example, the U.S. 

government instituted a mandate to boost the use of renewable fuels in 2005: the 

Renewable Fuel Standard. This standard requires the volume of renewable fuel blended 

into transportation fuels to be 36 billion gallons by 2022 (EPA 2013). 

The high volumes required by mandates, fluctuating rise in crude oil prices, 

environmental and future supply concerns with petroleum-based fuels, and sustainability 

are some of the many reasons why additional renewable fuels are needed to supplement 

the supply of transportation fuels from fossil sources. 

1.2 Renewable Energy Alternatives 

Renewable energy is derived by utilizing infinite natural resources such as 

sunlight, tidal, wind and geothermal heat energy. Thus, when compared to non-renewable 

fossil fuels,  the net impacts of renewable fuels introduce less harmful particulates and 

gases to the environment, and they have the potential to mitigate climate change and 

environmental pollution (Tan and Lee 2011). Of the total global energy consumption in 

2011, renewable fuels comprised only 1.6% - an increase of 18% from 2010 (BP 2012). 

The growth of renewable fuels worldwide still has a long way to go and has numerous 

benefits to give such as jobs, economic improvements, cleaner environment, etc. 

There are several kinds of renewable energy sources currently being developed 

including: wind, hydrothermal, solar, and biofuels. Solar, wind and hydrothermal are 
5 
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stationary sources and not practical for transportation applications that need liquid fuels. 

Biofuels are most likely to have the biggest impact and can be produced from local 

feedstocks in many parts of the world. 

1.3 Biofuels 

Biofuels refer to liquid or gaseous fuels for the transport sector that are 

predominantly produced from biomass (Demirbas 2007b), e.g. ethanol, hydrogen, 

biodiesel, methane, etc. Biomass as a feedstock is a renewable resource that could be 

sustainably developed.  It has positive environmental qualities as it causes no net releases 

of carbon dioxide and has very low sulfur content (Demirbas 2007b).  Some potential 

advantages of biofuels on the environment include: 1) better waste utilization, 2) 

reduction of local pollution, 3) reduction of net GHG emissions, and 4) more efficient use 

of landfill sites (Nigam and Singh 2011). 

Biofuels can be produced from biomass via thermochemical and biological routes. 

They are broadly classified as primary and secondary biofuels. Primary biofuels are used 

in their natural, unprocessed form typically for heating, cooking or for electricity 

production e.g. wood pellets, fuel wood, crop residues, etc. (Nigam and Singh 2011, 

Singh et al. 2011). Secondary biofuels are modified primary biofuels that are produced 

by processing the biomass. They can be solids (e.g. charcoal), liquids (e.g. biodiesel and 

ethanol), or gases (e.g. biogas and hydrogen) that can be used in vehicles and industrial 

processes (Nigam and Singh 2011). These secondary liquid biofuels are further classified 

as first, second and third generation liquid biofuels based on the raw materials and 

technology used in their production (Singh et al. 2011).  
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First generation liquid biofuels are generally produced from food and oil crops 

(e.g. sugars, grains or seeds) as well as animal fats using relatively simple and 

conventional production technologies (Nigam and Singh 2011, Singh et al. 2011). The 

most popular first generation liquid biofuel is ethanol, which is typically made by 

fermenting sugars extracted from corn or other starchy crops. Biodiesel produced from 

straight vegetable oils of oleaginous plants and bioethanol produced from organic-based 

matter with high sugar content fermented by enzymes produced by yeast are other 

examples (Nigam and Singh 2011). The challenge with first generation biofuels is the 

competition with food, which consequently raises the cost of the edible crops, and thus, 

the biofuel. Additionally, using edible crops require a lot of arable land, water and 

fertilizer requirements. High demand and sustainability highlight the need to find non-

edible alternatives for producing biofuels (Singh et al. 2011). 

Second-generation liquid biofuels are generally produced by biological and 

thermochemical processing of lignocellulosic biomass, which include non-edible residues 

of food crops, or non-edible whole plant biomasses, e.g. grasses (Nigam and Singh 2011). 

Examples are lignocellulosic ethanol and Fischer-Tropsch liquids. The advantage with 

second-generation biofuels is avoidance of the food vs. fuel issue.  However, there is still 

concern over competing land use since large portions of land are needed for growth of the 

non-edible biomass. 

Third generation liquid biofuels are obtained using microbial-based feedstock. 

Microbes such as yeast, fungi and algae can be used as a source of feedstock for the 

production of biofuels since they biosynthesize and store large amounts of fatty acids in 

their biomass (Nigam and Singh 2011). Third generation biofuels address the drawbacks 
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of the first- and second- generation fuels by not competing with food, and in some cases,  

not requiring significant land change and contributing to waste reduction.  Key benefits 

of third generation biofuels are the utilization of CO2 (e.g. algae) and/or organic waste 

(e.g., oleaginous microorganisms), which contributes to positive and sustainable 

environmental impacts. 

Some of the more common liquid biofuels include: ethanol and biodiesel. Ethanol 

has the largest market share of all the renewable fuels and is most commonly produced 

by fermentation of simple sugars. The heating value of ethanol as a fuel is typically 

reported as 101, 000 Btu/gal (Hodge 2010), and it can be blended with gasoline in 

different ratios. Current issues with ethanol include disagreement on its feedstock (corn) 

competing with food supply and the need for a lot of fresh water. Biodiesel comes behind 

ethanol and is a direct alternative for petroleum diesel. Biodiesel is discussed in greater 

detail in the next section. 

1.4 Biodiesel 

Biodiesel is a renewable fuel that can meet energy demands in conjunction with 

other fuel sources. It has similar properties to petroleum diesel that allow it to be blended 

in all ratios, and it can be used in existing infrastructure. 

1.4.1 History and Significance 

Biodiesel is a form of renewable energy that is mostly produced from oil crops, 

which absorb carbon from the atmosphere during growth. This carbon will eventually be 

released to the atmosphere during combustion; therefore, biodiesel is regarded as a 

carbon neutral source of energy as no additional emission is discharged to the 

8 
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environment from the carbon cycle (Tan and Lee 2011). It consists mainly of fatty acid 

alkyl esters typically obtained by the transesterification reaction of triglycerides with 

alcohols utilizing a catalyst. These triglycerides come from vegetable oils or animal fats. 

In the US, the main feedstock for biodiesel production is soy bean oil (Schuchardt et al. 

1998, Balat 2008). 

Vegetable oils had previously been tested as a fuel in engines more than 100 years 

ago (Demirbaş 2003).  They have heat contents about 90% that of diesel fuel but have 

problems such as high viscosity, nearly 10 times that of diesel fuel (Schwab et al. 1987) 

and were more expensive than petroleum fuels (Demirbaş 2003). Other problems with 

using neat vegetable oil as a fuel include: injector coking, ring sticking, more engine 

deposits, thickening of the engine lubricant, lower volatility and the reactivity of the 

unsaturated hydrocarbon chains (Demirbaş 2003). There are 5 methods that can be used 

to address the viscosity problem: 1) dilution, 2) microemulsification, 3) pyrolysis, 4) 

transesterification (Schwab et al. 1987), and 5) catalytic cracking (Rathore and Madras 

2007). Of these alternatives, the transesterification method seems to be the best choice for 

relatively small scale and distributed applications as the physical and chemical 

characteristics of the esters formed are very close to diesel fuel (Schuchardt et al. 1998), 

and the simple process of transesterification serves the purpose of reducing the viscosity 

of the oil (Demirbaş 2003).  

Capacity for biodiesel production has been growing for the last 15 years. The 

National biodiesel board reports that the U.S. biodiesel industry reached a key milestone 

of producing more than 1 billion gallons of biodiesel fuel in 2011, shown in Figure 1.4 

below.  
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Figure 1.4 Graph of biodiesel production in U.S. from National Biodiesel Board 
annual estimates 

(Board 2013) 

 

  

 

  

  

 

 

 

The Board found that biodiesel production of 1 billion gallons supports 39,027 

jobs around the country and more than $2.1 billion in household income (Board 2013). 

This growth will need to increase to satisfy the volume requirement of the Renewable 

Fuel Standard by 2022. In order to increase biodiesel supply, challenges related with 

feedstock cost and availability, as well as feedstock quality and consistency will need to 

be overcome. 

1.4.2 Advantages 

Some of the advantages of biodiesel that encourage its use include the following: 

 Properties and Performance as renewable fuel 

Biodiesel has the advantages of biodegradability, great lubricity, and miscibility 

with petrodiesel (Knothe et al. 2005, Al-Zuhair 2007, Knothe 2008). Other 

advantages include: a higher flash point and no modification needed in the diesel 

engine as biodiesel is compatible with existing engine models. It can be 
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commercially blended with diesel as a transportation fuel (Tan and Lee 2011) or 

serve as a substitute. 

 Environmental Impact and Safety 

Biodiesel has a cleaner impact on the environment due to almost zero sulfur 

emissions and almost no particulate matter (Marchetti et al. 2007). It has a lower 

CO2 footprint, is non-toxic, and causes less exhaust emissions (Demirbaş 2003). 

Additionally, biodiesel compares better than diesel fuel on environmental impact 

in terms of its sulfur content, ash point, and biodegradability (Demirbas 2007b).  

 Economic and Energy Security 

Biodiesel also has the potential of offering sustainable development since more 

than 40% of the world’s total energy consumption is in liquid form, whereas other 

sources like solar, hydrothermal and wind are only able to generate thermal 

energy or electricity (Tan and Lee 2011). In addition, the fact that it is 

domestically produced reduces dependence on imported petroleum fuels 

(Demirbaş 2003) and improves energy security. 

Notwithstanding these many advantages, biodiesel production still faces some 

challenges that are discussed in the next section. 

1.4.3 Production of Biodiesel 

Biodiesel consists mainly of fatty acid alkyl esters (FAAEs) and can be produced 

by two methods: 1) transesterification of fats and oils, or 2) esterification of fatty acids 

discussed below: 
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1.4.3.1 Transesterification 

Biodiesel can be obtained from the transesterification reaction of a vegetable oil 

or animal fat with an alcohol. This reaction, also known as alcoholysis, produces fatty 

acid alkyl esters (FAAEs), which are the biodiesel product. For the transesterification 

reaction, two types of alcohols can be used to produce biodiesel: methanol and ethanol. 

Methanol is the most commonly used alcohol for biodiesel production because it is 

generally the cheapest alcohol (Schuchardt et al. 1998). Thus, methyl esters are the most 

common form of biodiesel in the US. 

In the transesterification reaction, the oil or fats (consisting mainly of 

triglycerides) are reacted with an alcohol (usually methanol) in the presence of an acid or 

base catalyst to generate fatty acid methyl esters (FAMEs) and glycerol as a by-product 

(Knothe et al. 2005). The reaction consists of a 3-step reversible mechanism (see Chapter 

3). The objective of the transesterification reaction is to reduce the viscosity of vegetable 

oils to a value similar to conventional diesel since neat vegetable oils cannot be used 

directly in a diesel engine due to its high viscosity and low volatility, both of which could 

contribute to coking (Tan and Lee 2011). The overall reaction schematic is shown in 

Figure 1.5. 
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Figure 1.5 The transesterification reaction 

* R1, R2 and R3 are alkyl groups representing long fatty acid chains 

The most important factors affecting the transesterification reaction are the molar 

ratio of oil to alcohol, catalyst amount and type, reaction time, reaction temperature, and 

the content of free fatty acids and water in the oil feedstock (Demirbaş 2003). The 

optimization of each of these factors is crucial to improving biodiesel yield and making it 

cost-effective. 

1.4.3.2 Esterification 

Esterification occurs when fatty acids react with methanol in the presence of a 

catalyst to form fatty acid methyl esters (FAMEs) and water (Kamarudin et al. 1998). 

This reaction is shown in Figure 1.6. The main difference between esterification and 

transesterification lies in the reactants and products: in esterification, fatty acids are used 

instead of triglycerides and water is produced instead of glycerol. 
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Figure 1.6 The esterification reaction 

* R and R’ are alkyl groups 

Esterification is a one-step reaction; thus, the process requires milder reaction 

conditions than the transesterification reaction. Similarly, factors affecting the yield also 

include the molar ratio of fatty acids to alcohol, catalyst type and amount, reaction time, 

reaction temperature, and the content of water in the feedstock. 

The fatty acids used in the esterification may be present in the feedstock supplied 

e.g. waste frying oils (Chung et al. 2008) or may be produced by hydrolysis of the 

triglycerides present in an oil/fats feedstock. Hydrolysis is a 3-step reaction where water 

molecules split a triglyceride molecule to form fatty acids and glycerol as seen in Figure 

1.7 below: 

Figure 1.7 The Hydrolysis reaction 
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1.5 Issues with Feedstock 

Unfortunately, while biodiesel is an excellent alternative and supplement to 

petroleum-based fuels, it has a relatively high production cost predominantly due to the 

feedstock. It is estimated that, depending on the feedstock, biodiesel costs about one and 

a half times the cost of petroleum diesel (Zhang et al. 2003b).  Zhang et al. state that 70 -

95% of biodiesel production cost is attributed to the feedstock cost (Zhang et al. 2003b).  

Feedstock typically used for biodiesel production include vegetable oils such as 

soybean, rapeseed, coconut, palm, canola, jatropha oils, etc, animal fats such as tallow, 

and microalgae (Knothe et al. 2005, Chisti 2007). However, use of edible oils such as 

soybean and canola oils limits how much can be supplied for the biodiesel industry when 

there is a strong competition on its availability for the food industry. This would 

inevitably raise the price of food crops, which consequently raises the price of biodiesel. 

Some feedstock prices are shown in Table 1.1. 

Table 1.1 Typical biodiesel feedstock and their prices 

Feedstocks Sep. 2011 Prices ($/lb.) 

Soybean oil 0.55 

Rapeseed oil 0.59 

Coconut Oil 0.59 

Oil palm 0.45 

Sunflower oil 0.76 

Source: (IndexMundi 2011) 

Since the fatty acid reactants for the esterification method can also be obtained 

from the oil by hydrolysis, this high cost affects the esterification process as well. 

Therefore, there is a need to find relatively inexpensive feedstocks to make biodiesel 

production more cost effective. 
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Researchers have investigated the use of different kinds of feedstocks to deal with 

these challenges. Non-edible feedstocks evaluated include: waste cooking oil (Zhang et 

al. 2003a), Jatropha curcas (Shuit et al. 2010), and microalgae (Chisti 2008). The use of 

microbial oils is gaining attention.  Many researchers are working to develop an 

economic process to make biodiesel produced from these oils cost-competitive with 

petroleum diesel (Huang et al. 2010, Levine et al. 2010). 

From the literature review, the qualities of a great feedstock for biodiesel 

production include factors like: 1) non-edible 2) not requiring large portions of land, 3) 

relatively inexpensive 4) not requiring expensive pre-processing, 5) available year-round 

and in any region, and 6) integration to waste management. 

One alternative, high - potential feedstock is activated sewage sludge obtained 

from wastewater treatment plants, which is relatively inexpensive, since it is considered a 

waste, and it is readily available in any region.  Some cities in the US have more than one 

wastewater treatment facility. 

1.6 Activated Sewage Sludge as a feedstock 

Activated sludge is the solid or semisolid that is produced by the biological 

treatment of wastewaters.  It contains many living microorganisms that use oxygen to 

feed on wastewater and reduce the organic content (Dufreche et al. 2007). Sludge is a 

complex heterogeneous mixture of organic and inorganic materials (Fonts et al. 2009) 

and is the major waste produced in the urban wastewater treatment process (Fonts et al. 

2012). The lipids/oily content of the activated sludge (also referred to as sewage sludge) 

contains significant concentrations of lipids derived from the direct adsorption of lipids 

into the sludge (Kargbo 2010) that can be used to produce biodiesel.  
16 
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1.6.1 Benefits to using activated sludge 

There are many advantages to using sludge which include the following: 

 Valuable inherent properties 

Sludge contains the lipids that are needed for biodiesel production. Dufreche et al. 

report that it contains approximately 20% ether-soluble fats that can be converted 

to FAMEs (Dufreche et al. 2007) and Kargbo states that the significant 

concentration of lipids present in sludge can make biodiesel production from 

sludge profitable (Kargbo 2010). The wastewater from which it is obtained has 

properties conducive to microbial growth, and sludge microbes can be enhanced 

to increase lipid yield by growing under specific conditions (Mondala et al. 2012). 

In addition, sludge does not compete with food supply or require additional 

acreage like edible crops. It also has the benefit of current infrastructures already 

in place for its production and supply. 

 Positive environmental impact 

The positive environmental impact of using sludge as biodiesel feedstock includes 

reduction of the volume of waste sludge that is produced at the municipal 

wastewater treatment plants (MWWTPs). Sludge is currently an unwanted waste 

product of the MWWTPs and its disposal poses a high cost for treatment 

facilities. Dufreche et al. report that activities associated with sludge treatment 

represent about 30 to 80% of the electrical power consumed at a wastewater 

treatment facility (Dufreche et al. 2007). Furthermore, the U.S. EPA states that 3-

4% of the national electricity consumption (about $4 billion) is used in providing 

drinking water and wastewater services each year. With water and wastewater 
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utilities typically being the largest consumers of energy in municipalities, that 

represents about 30-40% of the total energy consumed (EPA 2012). Thus, using 

the waste to produce a renewable fuel instead of paying additional expenses to 

dispose of it would be more cost efficient. 

 Ease of availability to potential biodiesel producers 

Sludge is plentiful and is available in municipal wastewater treatment plants 

across the world, which makes it a potentially valuable feedstock that can be 

harnessed in many regions of the world to produce fuels locally for economic 

development. In the USA, wastewater facilities generate approximately 6.2 × 106 t 

(dry basis) of sludge annually (Dufreche et al. 2007), and this will continue to 

increase as global population also increases. There are more than 16,000 sewage 

treatment plants in the U.S. that treat more than 32 billion gallons per day of 

wastewater (United States Environmental Protection Agency: Office of 

Wastewater Management June 2011). Most of these treatment plants use the 

activated sludge process, which reduces sludge treatment time (Spellman 2009, 

Michael et al. 2013). Since activated sludge is a waste product from wastewater 

treatment operations, processes developed to extract the oil could start with a 

positive income stream due to tipping fees.  

 Economic development 

Kargbo reports that studies have shown that integrating lipid extraction in 50% of 

all existing U.S. municipal wastewater treatment plants and transesterification of 

those extracted lipids could produce 1.8 billion gallons of biodiesel, which is 

approximately twice the total biodiesel produced in the US in 2011  (Kargbo 
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2010). This not only increases biodiesel supply but provides jobs and allows 

economic development for municipalities. 

For these many reasons, identifying an alternative method to turn this waste into a 

valuable product rather than disposing of it is very important. Currently, the commonly 

used sludge disposal methods are landfills, land application in farms, or incineration.  

These existing disposal methods are not beneficial to the environment. For example, 

landfills are not environmentally friendly and cause accumulation of more waste into 

valuable land. Incineration has the benefit of reducing waste volume by 70% while 

destroying pathogens and toxic organic compounds, but is a high cost alternative (Fonts 

et al. 2012). The land application on farms method is feasible since sludge contains 

organic matter, nitrogen and phosphorus, making it suitable as fertilizer. However, sludge 

also concentrates heavy metals, pathogens, and some organic compounds, which could 

negatively affect the environment (Fonts et al. 2012). Fonts et al. state that even use as 

fertilizers cannot be done all year round because fertilizers are only applied once or twice 

a year, while sludge is generated year round; therefore, the sludge would need to be 

stored for long periods (Fonts et al. 2012).  

With the decreasing availability and increasing price of land for landfilling, 

thermal utilization of sewage sludge is growing as a means of managing sewage sludge, 

especially since the heating value of dried sludge is similar to that of coal (Tian et al. 

2002). There are several processes proposed for the thermal utilization of sewage sludge 

which include co-briquetting with coal, co-combustion with coal, using sewage sludge 

pyrolysis volatiles as a reburn fuel, and in the air-staged combustion of coal as well as 

incineration/combustion of sewage sludge alone (Tian et al. 2002).  However, one 
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challenge with these thermal utilization processes is that the NOx emissions must meet 

the increasingly stringent environmental standards, which is difficult especially since 

sewage sludge has a nitrogen content of 9 wt % which is 6.5 wt % higher than that of coal 

(Tian et al. 2002). 

The high output of sewage sludge that is constantly increasing over the years as 

well as the high cost and limitations of sludge disposal points to the need to find an 

alternative method of utilizing this waste and adding value to it. This study investigates a 

path to potentially recovering some of the energy and the capital that goes into sludge 

treatment and disposal by converting inexpensive raw materials/waste to environment-

friendly fuels, thus solving two problems – waste disposal and low renewable fuel 

supply. 

The origin of activated sludge from wastewater treatment plants is described in 

the following sections. 

1.6.2 Wastewater Treatment 

Municipal wastewater treatment plants are facilities that treat both domestic and 

industrial wastewater with the objective of producing a cleaner, environmentally safe 

liquid stream and solids that are suitable for disposal or re-use. Domestic inputs into 

wastewater are constituted mainly of detergents, kitchen wastewater and fecal organic 

matter, while industrial inputs consist of a wide range of wastes from petroleum to food-

processing by-products and depend on the economic activity of the wastewater catchment 

area (Jardé et al. 2005). Most conventional wastewater treatment plants generally have a 

preliminary, primary, secondary, and sometimes a tertiary stage that have different 
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biological and physicochemical processes at each stage (Spellman 2009, Michael et al. 

2013). A schematic of a typical MWWTP is shown in Figure 1.8 increase font of labels: 

Figure 1.8 Schematic of MWWTP with activated sludge system 

(Redrawn and modified from (Spellman 2009)) * 
*PS – Primary sludge; AS – Activated sludge; RAS – Return activated sludge; WAS – 
Waste activated sludge 

In most MWWTPs, the collected wastewater goes into a preliminary treatment 

stage where large solid particles are removed by shredding, screening and grit removal 

before proceeding to the primary treatment stage where settleable organics and floatable 

solids are removed by sedimentation in a clarifier. The primary treatment can remove as 

much as 90 - 95% settleable solids and 40 – 60% total suspended solids (Spellman 2009). 

The effluent from primary treatment then proceeds to the secondary treatment stage 

where biological processes are used to remove organic matter with aerobic or anaerobic 

systems (Michael et al. 2013). The aim of the secondary treatment is to convert the 

dissolved and suspended organic wastes to more stable solids that can be removed by 
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settling or that can be discharged safely to the environment (Spellman 2009). There are 

multiple types of biological treatments used in MWWTPs which include trickling filters, 

rotating biological contactors (Spellman 2009), fixed bed bioreactors, membrane 

bioreactors, and moving bed biofilm reactors, but the most widely used technology is the 

conventional activated sludge system (Michael et al. 2013). 

Activated sludge processes use dissolved oxygen to foster the growth of a 

biological floc, which extensively removes the organic material and nitrogen at given 

conditions (Michael et al. 2013). Both primary and secondary treatment processes 

generate waste solids, known as sewage sludge or biosolids. For the final stage, tertiary 

wastewater treatment processes could be applied to remove phosphorus by precipitation 

and in some cases, the effluent is disinfected before being released into the environment 

(Michael et al. 2013).  

1.6.3 How Activated Sludge works  

The activated sludge process was discovered in 1914 by Arden and Lockett in 

England when they recognized that the aeration of sewage formed flocculent suspended 

particles. This was important because the flocculent form could reduce the treatment time 

to remove organic contaminants from days to hours (Rittmann and McCarty 2001). A 

schematic is shown in Figure 1.9 below. 
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Figure 1.9 Schematic of the activated sludge system 

*PS – Primary sludge; AS – Activated sludge; RAS – Return activated sludge; WAS – 
Waste activated sludge) 

The main components of the activated sludge process are: the aeration tank, a 

settling tank/clarifier, a solids recycle from the settling tank to the aeration tank, and a 

sludge wasting line. The aeration tank serves as a suspended-growth reactor where the 

microorganisms metabolize and biologically flocculate the organic wastes (Spellman 

2009). The microbial aggregates (flocs) of microorganisms is the activated sludge 

(Rittmann and McCarty 2001). This activated sludge is maintained in the reactor via 

aerated mixing until it flows to the settling tank/clarifier where the flocs are removed by 

settling. The treated wastewater is removed as an effluent, and the settled flocs are 

recycled to the aeration tank or wasted to control the solids retention time. The recycling 

of the collected flocs (RAS) to the aeration tank is crucial to the activated sludge process 

because that leads to a much higher concentration of microorganisms in the reactor than 

could have been achieved without the settler and recycle, hence called “activated”. This 

high biomass concentration is what allows the liquid detention time to be shorter, making 

the process more cost effective (Rittmann and McCarty 2001).  The sludge-wasting line 

(WAS) helps control the solid retention time of the solids. 
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1.6.4 Microbial community and lipids in activated sludge 

Activated sludge contains a wide variety of microorganisms that include 

prokaryotes (bacteria), eukaryotes (protozoa, nematodes and rotifers), bacteriophage 

(bacterial viruses), and fungi. The dominant members of this community (by mass) are 

the heterotrophic bacteria, and they are the primary consumers of organic wastes 

(Rittmann and McCarty 2001).  

For producing biodiesel via transesterification, lipidic compounds are needed. 

Kargbo states that the cell membranes of the activated sludge microorganisms are a major 

component of the sewage sludge and are composed mainly of phospholipids, which are 

approximately 25% of the dry mass of the cell (Kargbo 2010). He reports that other 

energy-containing lipids present in sewage sludge consist of lipids like triglycerides, 

diglycerides, monoglycerides, phospholipids and free fatty acids contained in the oils and 

fats (Kargbo 2010). These lipids also characterized as oils, greases and fats are 

approximately 30 – 40% of the total chemical oxygen demand in municipal wastewater 

(Chipasa and Mȩdrzycka 2006). Since treatments in wastewater treatment plants are not 

consistent, the composition and characteristics of sewage sludge will vary depending on 

factors like wastewater origin, wastewater treatment, stabilization treatment of the sludge, 

time and storage conditions of the sewage sludge, and coagulants used (Fonts et al. 

2009). 

Jarde et al. report that the lipidic fraction of sewage sludge is a composite organic 

fraction including natural hydrocarbons, surfactants, fatty acids, sterols and 

micropollutants (Jardé et al. 2005). They state that fatty acids are the predominant family 

of compounds in the polar fraction of all sludges regardless of origin, usually in the range 
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of C10–C18. This can be expected because kitchen wastes produced from vegetable oils 

and animal fats show distributions of fatty acids dominated by C16:0 (palmitic acid), 

C18:0 (stearic acid), C18:1ω9 (oleic acid) and C18:2ω6 (linoleic acid) (Jardé et al. 

2005). This composition is also beneficial because fatty acids in that range form good 

quality biodiesel. 

1.6.5 Issues with activated sludge 

The use of activated sludge as a feedstock still has some challenges to be 

overcome for biodiesel production to be cost effective. Some of these challenges include: 

1) identifying how to collect the sludge fractions and treat them for maximum lipid 

extraction, 2) production challenges with efficient optimal reaction conditions and 

selecting a suitable catalyst, 3) bioreactor design to select and increase growth of 

microorganisms that have oil-producing capabilities, 4) bringing down production costs 

when processing costs are two-thirds of the biodiesel price (Kargbo 2010). 

1.6.5.1 Current Status of Lipids/Biodiesel from Sewage Sludge/Work done on 
Activated sludge 

Dufreche et al. (2007) used 3 solvent extraction methods (organic solvent mix, 

supercritical CO2 and in situ transesterification) and extracted as high as 20% lipids 

(Dufreche et al. 2007). Mondala et al. (2009) conducted in situ transesterification of 

primary and secondary sludge and obtained maximum FAME yields of 14.5% and 2.5% 

respectively at 75 °C, 5% (v/v) H2SO4 and 12:1 methanol:solid mass ratio (Mondala et al. 

2009). Revellame et al. (2010) optimized in situ transesterification of dry activated sludge 

and got an optimum biodiesel yield of 4.9% at 55 °C, 25ml/g MeOH:solid ratio and 4% 
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Figure 1.10 Production Cost Estimate for Sludge Biodiesel 

(Dufreche et al. 2007) 

sulfuric acid (Revellame et al. 2010). To investigate FAME yields in the presence of 

moisture, Revellame et al. (2011) also conducted an optimization study for the in situ 

transesterification of wet activated sludge and got a yield of 3.78% at 75 °C, 30ml/g 

methanol:solid ratio, and 10% vol sulfuric acid concentration (Revellame et al. 2011). In 

addition, Mondala et al. (2011) demonstrated that lipid content of sludge can be enhanced 

for biodiesel production by cultivating at high C:N ratios, producing lipid yield of ~ 18% 

and FAME yield of ~10% instead of 11 % lipid yield and 3 % FAME yield on raw 

activated sludge (Mondala et al. 2012). 

A limiting factor with sludge use, however, is the high cost of dewatering which 

consists of methods like filtration, centrifugation, and freeze-drying (Hellstrom and 

Kvarnstrom 1997). An earlier cost analysis conducted by Dufreche et al. (2007) shows 

that the highest cost in the production estimate for sludge biodiesel is the drying 

operation and maintenance cost, which accounts for approximately 41% of the total cost 

(Figure 1.10).  
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Mondala et al. also performed a cost analysis on the production of biodiesel from 

sludge and found that more than 50% of the production cost accounts for drying the 

sludge using these de-watering methods. The drying cost to obtain $3.23 break-even 

biodiesel price was 53% of the total production cost (Mondala et al. 2009). Since drying 

is so expensive, an option of proceeding with wet transesterification reaction could make 

sludge biodiesel more cost effective and competitive with petroleum diesel. 

1.7 Extractions of lipids 

There are two main alternatives to extracting lipids from cells for biodiesel 

production: 1) extraction of the lipids prior to reaction, and 2) combined extraction and 

reaction of the lipids. These alternatives can be pursued using the following methods to 

extract lipids from sludge; solvent extraction and reactive extraction. 

Solvent extraction can include the use of single solvents like n-hexane, methanol, 

acetone, supercritical CO2 (Dufreche et al. 2007), toluene and chloroform (Boocock et al. 

1992) to extract the lipids from the microbial mixture. Solvent extraction could also 

include methods like the Folch and Bligh & Dyer extraction methods (Ramalhosa et al. 

2012). The Folch extraction method involves homogenizing the lipid-bearing cells with a 

2:1 chloroform-methanol mixture and washing the extract with an additional 0.2 of its 

volume in water to form a biphasic system. The upper phase contains non-lipidic 

substances and negligible amounts of the lipid, while the lower phase contains the lipids 

(Folch et al. 1957). The Bligh and Dyer method uses a mixture of chloroform, methanol 

and water to extract the lipids into a single-phase system initially. This is followed by 

addition of more solvents to separate the system into two phases with the aqueous phase 

in the top layer and the lipids in the bottom, chloroform layer (Bligh and Dyer 1959). The 
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bottom phase of both methods can then be evaporated to obtain the dry lipid yield.  Some 

concerns with solvent extraction methods are that: 1) lipids might still have some water 

concentration, 2) the extraction method could be costly to use at large scale, depending 

on the volumes used, 3) re-extraction steps to ensure complete lipid isolation are still 

required and have long preparation times (Ramalhosa et al. 2012), and 4) depending on 

which solvent is used, solvents may be selective to certain lipids. 

In the case where these extractions are costly or take too long, researchers have 

also evaluated the use of supercritical fluids for reaction and extraction due to the low 

viscosities and high diffusivities (Patil et al. 2011). The combined extraction and reaction 

method, also known as reactive extraction, involves the reaction with alcohol to produce 

biodiesel from the cells directly without separating the lipids from the cells prior to 

reaction as in the case of in situ transesterification reactions at sub-critical and 

supercritical methanol reaction conditions (Mondala et al. 2009, Levine et al. 2010, 

Revellame et al. 2010). 

1.8 Catalytic and non-catalytic processes 

The biodiesel production reactions, both transesterification and esterification, at 

sub-critical conditions are very slow without the addition of a catalyst and would not be 

economical without using a catalyst to increase the yields and speed up the reaction time. 

For example, Diasakou et al. reported that without a catalyst, methyl esterification of 

soybean oil required 10 hours to obtain 85% yield at a relatively high temperature of 

235°C (Diasakou et al. 1998) while Di Serio et al. show that with a heterogeneous 

catalyst such as magnesium oxide, transesterification of soybean oil can achieve FAME 
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yield of 90% in 1 hour of reaction time at 180 °C (Di Serio et al. 2007). This shows the 

need for a catalyst if aiming for an efficient process. 

1.8.1 Catalyst selection for biodiesel production 

Some important considerations to make when selecting a catalyst are to consider: 

activity and selectivity, stability, heterogeneous nature and cost (Lee and Saka 2010). The 

purity of the feedstock also plays an important role. The presence of free fatty acids and 

water in the feedstock causes soap formation, consumes the catalyst and reduces catalyst 

effectiveness, all negative effects that lead to low conversion (Demirbas 2007a). Even 

refined oils and fats contain some amounts of water and free fatty acids and either need to 

be pretreated or used with a tolerant catalyst. 

Some catalysis issues include leaching, which is the loss of active compounds in 

the catalyst to the reaction media. Leaching is known to be accelerated in metal oxide 

catalysts, such as ZnO and CaO, when there are free fatty acids or water present (Lee and 

Saka 2010). Leaching is affected by the active compound type, the porous support, and 

the polarity of the reaction media (Lee and Saka 2010). Another catalyst issue is one 

where organic deposits foul the pores of the catalyst, thus deactivating the catalyst. In a 

study of transesterification of palm kernel oil using CaO-ZnO catalyst, the deactivation 

was caused by more than 12 wt % of organic deposits on the catalyst 

(Ngamcharussrivichai et al. 2008); this is another factor to consider during catalytic 

reactions. 
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1.8.2 Homogeneous versus Heterogeneous biodiesel catalysts 

Homogeneous catalysts are advantageous because they form a uniform mixture 

with the reactant, eliminating mass transfer limitations, and affording high reaction rates 

(Lestari et al. 2009). However, the homogeneous (liquid catalyst in liquid reactants) 

system used has disadvantages that include difficulty in products separation, 

impossibility of catalyst recovery from reactant-product mix, limitation in establishing a 

continuous process, and reactor corrosion from dissolved acid/base species. Also, the 

biggest problem with using homogeneous catalysts like sodium hydroxide (NaOH) is 

soap formation which adds complexity to product separation. This occurs when water 

reacts with esters formed to produce carboxylic acids, which rapidly react with alkaline 

metals to form soaps such as RCOO-Na+ (Lee et al. 2009, Zabeti et al. 2009). This study 

will be using heterogeneous catalysts (solid catalyst in liquid reactants) for the proposed 

project since they address many of the drawbacks of a homogeneous system, and the 

reactions being studied have high water content.  The most common problem of the 

heterogeneously catalyzed processes is its slow reaction rate compared to the 

homogeneous process. This can be compensated for by increasing reaction temperature 

(100 – 250 °C), catalyst amount (3- 10 wt %), and methanol/oil molar ratio (10:1 – 25:1) 

(Lee et al. 2009). 

1.8.3 Acidic versus Basic catalysts 

The most commonly used alkali catalysts are sodium hydroxide, sodium 

methoxide and potassium hydroxide. Sulfuric acid, hydrochloric acid and sulfonic acid 

are usually used as acid catalysts (Demirbas 2007b).  Although acid-catalyzed 

transesterification promotes high FAME yields, it suffers from a slow reaction rate: 1 – 
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45 hours, compared with base-catalyzed transesterification: 1- 8 hours (Demirbas 2007b). 

Thus, the acid-catalyzed reaction needs relatively higher temperatures and catalyst 

loadings to complete conversion (Lee et al. 2009). 

Another disadvantage of acid-catalyzed transesterification is the sensitivity of the 

reaction to water content in the system due to a competitive parallel reaction occurring 

that converts a carbocation intermediate in the reaction mechanism to carboxylic acids 

instead of FAMEs (Schuchardt et al. 1998, Lee et al. 2009). Schuchardt et al. reported 

that this suppressed the biodiesel yield; therefore, acid-catalyzed transesterification 

should only be conducted in the absence of water (Schuchardt et al. 1998). 

1.8.4 Issues with current catalysts/processes 

There are two main issues that limit the use of heterogeneous catalysts in 

biodiesel production processes, especially with wet feedstock: catalyst cost and its 

response to the presence of impurities like water in the feedstock. 

1.8.4.1 Cost 

Some catalysts may be suitable for transesterification reactions, producing high 

yields, but the catalyst may so expensive that the production of biodiesel on a large scale 

is not feasible or may not be readily available on a large scale e.g. Amberlyst BD20 

catalyst (Park et al. 2010b).  

1.8.4.2 Effect of Water 

Park et al. conducted a study on the effects of water on the esterification of free 

fatty acids (FFA) using heterogeneous acid catalysts: Amberlyst 15 and Amberlyst BD20. 

They illustrated that Amberlyst 15 demonstrated good efficiency on oils with a low FFA 
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content of 2.5 wt% but was hindered by water. The Amberlyst BD20 catalyst showed 

significant catalytic activity for high FFA oils, higher tolerance for water, and its activity 

did not decrease with re-use. The difference was explained by showing that the presence 

of pores on the Amberlyst 15 catalyst allowed water to adsorb on the inner surface of the 

catalyst which prevented oil with a hydrophobic property from being converted. 

Amberlyst BD20, which had no pores, maintained its activity despite the presence of 

water. While the Amberlyst BD20 catalyst is very attractive, it is an expensive catalyst 

and is not readily available (Park et al. 2010b). Other studies conducted on the effects of 

water include work done by Liu et al. (2006) which studies the effect of water on sulfuric 

acid-catalyzed esterification.  In this homogeneous reaction, they reported that there is a 

decrease in initial reaction kinetics as water concentration increases and indicated that 

catalysis is impaired as esterification proceeds (Liu et al. 2006b). This work gives an 

initial hypothesis on how water could affect the reactions in the proposed project. 

Based on current literature, this study identified three reaction processes that look 

promising for these reactions in the presence of water: transesterification with porous 

metal oxides (PMOs), esterification with zeolites for and a noncatalytic process with 

supercritical methanol. 

1.8.5 Basic – Porous Metal Oxides (PMOs) 

PMOs are hydrotalcite-based catalysts with basicities and surface areas that can 

be tuned by modifying the hydrotalcite chemical composition and preparation procedures 

(Lee et al. 2009). A hydrotalcite is a layered Mg2+/Al3+ double hydroxide of the formula, 

[Mg6Al2(OH)16CO3]•4H2O (Antunes et al. 2008, Lee et al. 2009). Its structure comprises 

brucite-like layers where the substitution of Al3+ for Mg2+ cations generates an excess of 
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positive charges that are compensated for by the carbonate anions located with water 

molecules in the interlayer space (Kustrowski et al. 2004, Antunes et al. 2008). The 

Mg/Al ratio can range from 2 to 4, with 3 being the best in terms of basic activity as 

noted by other researchers (Di Cosimo et al. 1998, Lee et al. 2009). Substituted 

hydrotalcite-like materials are formed by substituting a certain molar percentage of the 

Mg2+ ions with a divalent ion such as copper, and/or substituting a molar percentage of 

the Al3+ ions by a trivalent ion such as iron or gallium. The substituted hydrotalcites that 

are used in this work have the formula: 

[(Mez
2+Mg1-x) 1-x Alx(OH)2](CO3)x/2•nH2O (1.1) 

where Me2+ = Cu, z = 0.1- 0.2; x = 0.25 and 

[Mg1-x(Mey
3+Al1-y)x(OH)2](CO3)x/2•nH2O (1.2) 

where Me3+ = Ga, Fe or La, y = 0.05 – 0.2; x = 0.25. 

PMOs are formed when hydrotalcites are calcined to release CO2 and water. 

These catalysts are known to have large surface areas, which is advantageous because it 

allows more exposure of the active sites to the reactants. Macala et al. show that the 

Brunauer-Emmett-Teller (BET) surface areas for uncalcined Fe-10 and unsubstitued 

hydrotalcites are 68.6 m2/g and 87.1 m2/g respectively (Macala et al. 2008). For calcined 

species (PMOs), they report that unsubstituted hydrotalcite, Fe-10, and Fe-20 PMOs have 

BET surface areas of 111.8 m2/g, 123.6 m2/g, and 161.1 m2/g respectively when calcined 

at 460 °C. They are reported to be tunable and tolerant of water (Di Serio et al. 2007), 

hence the investigation. 
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1.8.6 Acidic - Zeolites 

Zeolites are microporous crystalline solids with well-defined structures usually 

containing silicon, aluminum, and oxygen in their framework (Chung et al. 2008). A 

common characteristic used to distinguish zeolites is their silica-to-alumina (SiO2:Al2O3) 

ratio, which determines the acidity (number of total acid sites) and hydrophobicity of the 

catalyst. The acidity decreases with decreasing Al content, so a catalyst with larger silica: 

alumina ratio has lower acidity (Chung et al. 2008, Shirazi et al. 2008). The 

hydrophobicity increases with increasing silica-to-alumina ratio (Navalon et al. 2009). 

These catalysts also offer tenability in determining if a particular zeolite with a specific 

silica-to-alumina is more tolerant to water during the biodiesel reaction. 

1.8.7 Non-catalytic alternative - Supercritical Methanol 

A supercritical fluid is a fluid existing at conditions above its critical temperature 

and pressure and having the viscosity of a gas and density of a liquid. Under these 

conditions, the supercritical fluid has outstanding transport properties coupled with 

highly tunable solvent properties (de Boer and Bahri 2011).  

Supercritical methanol addresses several of the limitations occurring with 

conventional heterogeneous catalytic processes. These limitations include complicated 

separation and purification of biodiesel, long reaction times, sensitivity to high water and 

fatty acid content, and exorbitant cost of catalysts which make some of those processes 

uneconomical (Tan and Lee 2011). All these limitations point to the use of catalysts in 

the transesterification reaction. Hence in recent years, many more researchers have 

worked on developing technologies using supercritical fluids that can overcome 

limitations of heterogeneous catalysis. 
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For example, unlike conventional transesterification processes that need 

pretreatment, supercritical methanol allows the use of the original feedstock instead of 

extracted and purified oil as the source of triglycerides for transesterification. Additional 

fatty acids present in the feedstock will undergo esterification simultaneously with the 

transesterification reaction, and water present typically has minimal effect on the 

conversion (Kusdiana and Saka 2004a). Also, water present in the feedstock can cause 

hydrolysis of the triglycerides to fatty acids which are simultaneously converted to esters 

through the faster esterification reaction. Thus, the supercritical methanol process can 

work with any lipid-containing feedstock and allows for cost savings on the solvent 

extraction process. The supercritical conditions allow the usually immiscible nonpolar oil 

and polar methanol to form a one-phase solution, and hence the supercritical condition 

increases the reaction rate due to the enhanced contact area between the two reactants. By 

reducing the multiple process steps to extract oil before producing alkyl esters, the use of 

additional reagents, solvents and unit operations is reduced, bringing down the cost of the 

final product. In addition, downstream separation of the products can be relatively easier 

with the supercritical methanol process. 

Challenges with the supercritical methanol process include: energy consumption, 

cost and safety issues (Tan and Lee 2011). The high temperature and pressures used in 

the process cause a concern. These intense reaction conditions require high pressure 

equipment such as reactors, furnaces and pumps that are part of the capital costs in 

addition to costs of solvent needed to produce biodiesel. However, there is room to 

counter these costs by the amounts that would be saved by: 1) not using any catalyst, 2) 
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not having feedstock pretreatment steps that include drying and extraction, 3) no 

additional post-processing steps for separating catalysts, etc. 

1.9 Remarks 

It has been demonstrated that activated sludge is a promising feedstock for 

biodiesel production with the main challenge being reducing or avoiding the cost of 

dewatering the sludge before conversion to biodiesel. This has been investigated in this 

study in two ways: 1) by seeking to identify water-tolerant catalysts and the maximum 

water content the catalyst would tolerate efficiently, and 2) evaluating a process that skips 

the drying step altogether. To avoid this de-watering cost, the purpose of this project was 

to examine the feasibility of using sludge with high water content to produce biodiesel 

commercially by investigating the effects of water on biodiesel yield from the two 

reaction methods and the catalysts used. The effect of water on transesterification and 

esterification reactions, the reaction mechanism behind it, and the deactivating effect of 

water on the catalysts are areas that have been given minimal attention in the literature. It 

is possible that these reactions will proceed in the presence of high water content; 

however, the effects of water may be detrimental on the transesterification and 

esterification reactions. In addition, an understanding of the transesterification and 

esterification kinetics is required to increase the efficiency of the reaction. 

While these catalytic and non-catalytic processes have been used on other 

feedstock for biodiesel, they have not been used with microbial cells evaluating them at 

water content as high as 90%. One of the goals of this project is to have a better 

understanding of reaction mechanisms in these 3 processes with high water content and 

determine an economically feasible process that can be used for wet sludge as a 
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feedstock. Since water could have a negative effect on the mechanism, identifying how it 

works could help improve the reaction process for better yields. This work reports the 

effect of water on each process and catalyst. 
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CHAPTER II 

RESEARCH HYPOTHESIS AND STUDY OBJECTIVES 

2.1 Statement of the Problem 

Researchers have shown that biodiesel can be obtained from activated sludge. 

However, due to the high cost of drying - 50% of biodiesel production cost, there is 

opportunity for the economics of the biodiesel production process to be improved if the 

drying costs are reduced or removed. 

The main motivation for this work was to improve the cost-competitiveness of 

biodiesel production from activated sludge and to reduce the sludge waste. A chemical 

approach was taken to solve this problem by selecting the most efficient process after 

evaluating the use of three different reaction processes and evaluating their biodiesel 

yields, kinetics, mechanisms and economics. 

2.2 Research Hypothesis 

The guiding hypothesis for this work was that biodiesel can be produced from wet 

activated sludge at a relatively high yield and for a competitive price if: 1) a strong, 

water-tolerant catalyst was used, particularly one with tunable catalytic properties. This 

assumed that by tuning specific catalytic properties, an optimal catalyst for high water 

content reactions can be obtained; or 2) a non-catalytic process was used to avoid adding 
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a catalyst that could be deactivated by the water content. These two approaches could 

either reduce the cost of drying or remove it altogether if they perform excellently. 

However, while the literature shows that it is possible that the transesterification 

and esterification reactions will proceed with water present in the system initially, it 

points out that high water content might pose a problem for catalytic reactions by 

poisoning the acidic/basic sites on the solid catalyst or causing reverse hydrolysis, thus 

reducing the biodiesel yield. 

Therefore, in selecting the best catalyst, the acidity, basicity and hydrophobicity 

of the catalysts play a significant role in the biodiesel yield obtained from reactions with 

high water content. If catalysts are used, they need to be highly water-tolerant.  

2.3 Goal and Objectives 

The overall goal of this work was to develop an economically-efficient biodiesel 

production process using activated sludge with high water content as a feedstock and to 

determine the feasibility of building a large-scale biodiesel production plant using the 

optimal reaction process developed in this study that can produce relatively high 

biodiesel yields and sell biodiesel at a cost-effective price. This goal has been split into 3 

specific objectives: 

2.3.1 Primary Objective 1: Evaluation of the effect of water on base-catalyzed 
transesterification of soybean oil with methanol over porous metal oxides 
(PMOs) 

Chosen for their versatile basicity tuning properties as well as indication of their 

water tolerance in the literature, these catalysts show promise for use with wet activated 
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sludge. This study evaluates if tuning these basic catalysts could make the catalyst more 

tolerant of high water content. 

The study evaluates: 1) the effects of varying water content on transesterification 

of soybean oil (surrogate of triglycerides in sludge oil/fats) using PMOs, searching for an 

optimum water concentration that promotes the highest yield of biodiesel in the reaction; 

and 2) kinetic experiments on the transesterification reaction with and without water to 

determine reaction parameters and understand the effect of water on the reactions and 

catalysts for potential full-scale reactor design. 

2.3.2 Primary Objective 2: Evaluation of the effect of water on the esterification 
of palmitic acid with methanol using acidic zeolite catalysts 

Chosen for their versatile acidity and hydrophobicity properties, these catalysts 

also show promise for use with wet activated sludge. Tuning the silica:alumina ratios of 

the acidic catalysts (zeolites) might identify a catalyst that is reasonably tolerant of high 

water content due to an optimal combination of hydrophobicity and acidity. Palmitic acid 

was chosen as a surrogate of the fatty acids as it is one of the predominant lipids 

extracted from sludge. 

This study evaluates: 1) the effects of varying initial water content on 

esterification of palmitic acid to identify an optimum water concentration that promotes 

the highest yield of biodiesel; and 2) kinetic experiments on the esterification reaction to 

determine reaction parameters and propose a mechanism to understand the effect of water 

on the reactions and zeolites for potential full-scale reactor design. 
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2.3.3 Primary Objective 3: Evaluation of the feasibility of using a non-catalytic 
process (supercritical methanol) for biodiesel production from wet 
microorganisms and activated sludge 

Using supercritical methanol to serve as both a reactant and catalyst would 

accelerate the reaction and could allow the sludge drying step to be skipped, thus saving 

money by: no catalyst use, no drying and no pretreatment step to remove water and/or 

fatty acids as in conventional methods. 

A model oleaginous (oil-retaining) microorganism, Rhodotorula glutinis, was 

used for most of the reaction condition optimization studies to reduce the variations 

between sludge batches. This study evaluates: 1) the optimum reaction conditions for this 

non-catalytic process, 2) the effect of water on FAME yields, 3) kinetic experiments on 

the reactions with and without water to determine rate constants and rate expressions, and 

4) an economic analysis to determine if biodiesel production from sludge with high water 

content is cost-effective. 

This work is important because little work has been conducted on biodiesel 

production from sludge with high water content in the literature. Researchers who have 

conducted transesterification research work with sludge have typically dried or 

concentrated the sludge first before reaction. This research shows water tolerance of the 

catalysts at various compositions and generates various kinetic data on each process. 

The identification of a process and catalyst to produce biodiesel with high water 

tolerance will be of intellectual interest to the academic, governmental and industrial 

communities. Knowledge of the reaction mechanisms proposed, the optimum reaction 

conditions, and the deactivating effects of water on the catalyst can be used in the design 

of efficient large-scale reactors which can optimize conversion of sludge oil to biodiesel. 
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This research could enable commercial production of biodiesel at a relatively low cost 

from a readily available, non-food feedstock and also presents a means of utilizing 

wastewater and increasing global supply of fuels. 
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CHAPTER III 

EFFECT OF WATER ON BASE-CATALYZED TRANSESTERIFICATION OF 

SOYBEAN OIL WITH METHANOL OVER PROMOTED HYDROTALCITE-

DERIVED CATALYSTS 

3.1 Introduction 

One of the most widely used methods of biodiesel production is the 

transesterification reaction of oil and alcohol. Although very common, it faces some 

challenges that have limited its ability to be cost-competitive with petroleum diesel. The 

main issue, as discussed in Chapter 1, is the feedstock cost. Researchers in the literature 

have addressed this problem by evaluating the use of various feedstock that are 

inexpensive and do not compete with food, such as waste oils and microalgae. In 

particular, a number of researchers have shown the potential of activated sewage sludge 

as a relatively less expensive and readily available feedstock (Dufreche et al. 2007, 

Mondala et al. 2009, Kargbo 2010) . 

Activated sludge, as described in Section 1.6 of Chapter 1,  is the solid or 

semisolid that is produced by the biological treatment of wastewaters containing many 

living microorganisms that use oxygen to feed on wastewater and reduce the organic 

content (Dufreche et al. 2007). It can also be a high-potential feedstock for the 

transesterification reaction since sewage sludge contains significant concentrations of 

49 



www.manaraa.com

 

 

 

 

   

 

  

 

  

 

   

 

  

 
                          

  

Triglyceride      Methanol  FAMEs (Biodiesel)               Glycerol 

Figure 3.1 Transesterification reaction using methanol 

lipids derived from the direct adsorption of lipids into the sludge (Kargbo 2010) that can 

be used to produce biodiesel. 

The limiting factor with sludge use however is the high cost of dewatering to 

separate the sludge fats/oil. This high cost can be reduced by drying sludge partially and 

identifying a water-tolerant catalyst that can produce high FAME yields in the 

transesterification reactions with sludge lipids of high moisture content. Since it is likely 

that the catalyst will be affected by the presence of water, the aim of this study was to 

determine the extent of water tolerance. Different water compositions were studied to 

simulate the drying extent and the maximum tolerable level of water content for the 

catalyst. 

3.1.1 Transesterification reaction 

The transesterification reaction is a catalyzed chemical reaction that uses alcohols 

(e.g. methanol) to convert triacylglycerols (triglycerides) to fatty acid alkyl esters (e.g. 

fatty acid methyl esters or FAMEs) and a glycerol by-product. Triacylglyerols or 

triglycerides, the main component of vegetable oil, are made up of 3 long chain fatty 

acids connected to a glycerol backbone. The reaction is shown below in Figure 3.1. 
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When the triglycerides react with the alcohol, the fatty acid chains are released 

from the glycerol skeleton to form the fatty acid methyl esters and glycerol as a by-

product (Zhang et al. 2003a). This takes place in a 3-step reversible reaction (Figure 3.2) 

that converts triglycerides to diglycerides, the diglycerides to monoglycerides, and finally 

monoglycerides to fatty acid methyl esters. Thus, 3 moles of fatty acid methyl esters are 

formed when 1 mole of triglycerides combines with 3 moles of alcohol. 

Figure 3.2 The 3 reversible steps in the transesterification reaction 

For transesterification, vegetable oils from various feedstocks such as corn, 

soybean, rapeseed, coconut, oil palm, and canola oils are often used (Ma and Hanna 

1999, Knothe et al. 2005, Chisti 2007). However, as discussed in Chapter 1, the need to 

find a less expensive, non-edible alternative to make biodiesel an economically 

competitive alternative fuel has led to research on the use of activated sludge as a 

feedstock. In this study, soybean oil will be used as a model compound for sludge oil to 

evaluate the effect of water on the reaction and catalyst since it contains triglycerides that 

would also be present in the extracted/reacted sludge oil. 
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  Figure 3.3 Mechanism of the acid-catalyzed transesterification of vegetable oils 

(Schuchardt et al. 1998).  

Transesterification reactions can be catalyzed by a base, acid, or enzyme (Lee et 

al. 2009). In the acid-catalyzed homogeneous process, the hydrogen from the acid 

protonates the carbonyl group of the ester and forms a carbocation which, after a 

nucleophilic attack of the alcohol, produces a tetrahedral intermediate. This intermediate 

eliminates glycerol to form the new ester and regenerate the H+ (Schuchardt et al. 1998, 

Lee et al. 2009). The mechanism is shown in Figure 3.3. 

The main drawbacks for an acid-catalyzed transesterification is a low rate of 

reaction compared with base-catalyzed transesterification, and the need for  higher 

temperatures sometimes to reach complete conversion (Lee et al. 2009). Furthermore, 

Revellame et al. (Revellame et al. 2010) showed that acid-catalyzed in situ  

transesterification of sludge is complicated by an acid-catalyzed polymerization of  

unsaturated fatty  acids at temperatures above 60°C, which significantly decreases 

biodiesel yield. In their study, activated sludge obtained from a municipal wastewater 
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treatment plant was concentrated, freeze-dried, and transesterified with methanol for 24 

hours using sulfuric acid as the catalyst. It was shown that acid-catalyzed production of 

estolides (oligomeric fatty acid esters) proceeds at a slow reaction rate at 50°C and 

significantly faster at 75°C, despite a lower concentration of acid catalyst. Another 

disadvantage of the acid-catalyzed transesterification is its sensitivity to water content in 

the reaction system. As seen in the mechanism, carboxylic acids can be formed by the 

reaction of the carbocation with water present in the reaction instead of alkyl esters thus 

reducing the biodiesel yield (Schuchardt et al. 1998, Lee et al. 2009). 

In the homogeneous base-catalyzed mechanism (Figure 3.4), the base abstracts a 

hydrogen ion from the alcohol, and an alkoxide is produced. A nucleophilic attack of the 

alkoxide at the carbonyl group of the triglyceride results in a tetrahedral intermediate that 

rearranges to form the alkyl ester and the corresponding anion of the diglyceride, which 

deprotonates the catalyst. Thus, the active species are regenerated and can react with 

another molecule of alcohol and start another catalytic cycle. Diglycerides and 

monoglycerides are converted to alkyl esters and glycerol by this continuous mechanism 

(Schuchardt et al. 1998, Lee et al. 2009). 
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Figure 3.4 Mechanism of the base-catalyzed transesterification of vegetable oils 

(Schuchardt et al. 1998) 

While the homogeneous system allows great mixing as well as faster reaction, the 

drawbacks include soap formation (if fatty acids are present), difficulty in separation of 

products, impracticality of catalyst recovery from reactant-product mix, limitation in 

establishing a continuous process, and reactor corrosion from dissolved acid/base species 

(Lee et al. 2009). Also, the alkaline and acidic wastewater generated from the separations 

require additional cost for disposal (Tan and Lee 2011). 

The heterogeneously-catalyzed transesterification processes address most of the 

drawbacks of the homogeneous system, however, its major problem is its slow reaction 

rate compared with the homogeneous process as reported by Lee (Lee et al. 2009). This 

can be compensated for by increasing reaction temperature, catalyst amount, and 

methanol/oil molar ratio (Lee et al. 2009). Thus, it was decided to focus on basic 

heterogeneous catalysts for transesterification in this part of the study. Basic catalysts 

were chosen for the transesterification reaction in this study due to the numerous 
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disadvantages of acid-catalyzed transesterification outlined in the literature, as discussed 

in section 1.8, Chapter 1. 

The most important factors affecting the transesterification reaction are the molar 

ratio of oil to alcohol, catalyst amount and type, reaction time, reaction temperature, and 

the content of free fatty acids and water in the oil feedstock (Demirbaş 2003). These 

variables need to be selected wisely as they all contribute not only to the biodiesel yield 

but to the cost of production as well. Typical reaction conditions for base heterogeneous 

catalytic reactions are  temperature of 100 – 250 °C, catalyst amount of 3- 10 wt %, and 

methanol/oil molar ratio of 10:1 – 25:1 (Lee et al. 2009). 

The presence of heterogeneous catalysts in the reaction mixture causes a three-

phase system of oil-methanol-catalyst to be formed, which inherently inhibits the reaction 

because of diffusion limitations (Xie et al. 2006) and points to the fact that the reaction 

mixing is very important as well. 

Increasing reaction temperature helps improve phase miscibility and allows better 

reaction kinetics especially in this potentially diffusion-limited process. 

Stoichiometrically, three moles of methanol are needed for the transesterification of 1 

mole of triglyceride to occur. It is expected that using excess methanol will help drive the 

reaction to form the desired FAMEs product since it is a reversible reaction. Liu et al. 

observed that for a set reaction time of 2 hours, poultry fat conversion steadily increased 

from 23% to 75% when methanol:oil ratio was increased from 6 to 60 (Liu et al. 2007). 

At the 60 ratio, it took 3 hours to reach 91% TG conversion, but it took 15-fold this 

reaction time to do the same when using a ratio of 6. Xie et al., however, found that the 

benefit of molar ratio increase approached saturation at a molar ratio of 15:1 (Xie et al. 
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2006) and do not recommend higher ratios. Liu et al. believe this is because they used a 

fixed mass ratio of catalyst:triglyceride (Liu et al. 2007). 

In the proposed study, the type of catalyst is important due to the uniquely high 

moisture content of the proposed feedstock, activated sludge. Since the organic, nonpolar 

oil and the inorganic, polar alcohol are not very miscible to form one phase of solution, 

there will be poor contact between the reactants which causes the reaction to proceed 

relatively slowly. Increasing temperature and mixing rates could help; however, one other 

useful change is adding a catalyst at an elevated temperature to increase the reaction rate. 

3.1.2 Catalysts typically used 

Previous studies have used various catalysts such as metal oxides: MgO, CaO (Di 

Serio et al. 2007), BaO (Hattori 1995); and supported catalysts like Na/NaOH/γ-Al2O3 

(Kim et al. 2004). The Na/NaOH/γ-Al2O3 tested by Kim et al. worked as a superbase 

giving yields similar to a homogeneous base catalyst.  Liu et al. found that catalytic 

activities for biodiesel synthesis using alkali earth oxides like MgO and CaO had poor 

performance due to low surface area and limited concentrations of edge and corner defect 

sites (Liu et al. 2007). 

3.1.3 Choice of catalysts 

Based on the catalyst selection criteria described in section 1.5, we selected 

hydrotalcite-derived catalysts called porous metal oxides (PMOs) to take advantage of 

the following properties: 1) the basicity and surface area of the PMOs can be tuned by 

modifying the chemical composition and preparation procedures (Lee et al. 2009), 2) 

large surface areas (Macala et al. 2008), 3) tolerant to water (Di Serio et al. 2007).  
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The basicity directly impacts the reaction conversion. Additionally, a large 

catalytic surface area is essential for heterogeneous catalysts, because more access of the 

substrates to the active sites will improve conversion rates. For example, Liu et al. states 

that the solid catalysis of reactions with large molecules can be restricted by limited 

surface site concentration and steric hindrance of the reactants.  Limited surface 

concentration may also be made up for by increasing catalyst loading (Liu et al. 2007). 

Finally, the catalysts selected needed to be tolerant to water due to the inherent high 

moisture content of the feedstock – activated sludge. 

3.1.4 Hydrotalcites 

Hydrotalcites are precursors for a wide range of metal oxides (Li et al. 2011). 

They are also called layered double hydroxides (LDHs) and have the general formula of 

2+ Mx[M1-x 
3+(OH)2][An-] x/n·yH2O, where M2+ and M3+ are divalent and trivalent cations in 

the octahedral sites within the hydroxyl layers, and An- is an exchangeable interlayer 

anion.  x is equal to the ratio of M3+/( M2++ M3+) and typically has a value in the range of 

0.17 – 0.50.  M2+ and M3+ should typically have their ionic radii close to 0.65Å, which is 

characteristic of Mg2+, to form a stable hydrotalcite structure (Kustrowski et al. 2004). 

Divalent cations such as Mg, Mn, Fe, Co, Ni, Cu, Zn and Ga; and trivalent metal 

cation such as Al, Cr, Mn, Fe, Co, Ni, and La are often used. Some interlayer anions 

-could be CO3
2-, OH-, NO3

-, SO4
2- or ClO4 (Li et al. 2011). In naturally-occuring 

hydrotalcite (e.g. Mg6Al2(OH)16CO3·4H2O), the interlayer anion is carbonate, although 

various inorganic, complex and organic anions can be used. Thus, hydrotalcites give the 

opportunity to prepare tailor-made materials for particular applications by varying the 

cations and anions used (Kustrowski et al. 2004). 
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The hydrotalcite structure comprises brucite-like layers where the substitution of 

Al3+ for Mg2+ cations generates an excess of positive charges that are compensated for by 

the anions located with water molecules in the interlayer space (Kustrowski et al. 2004, 

Antunes et al. 2008). Figure 3.5 below shows 3 common distances that are typically 

measured to characterize or identify a hydrotalcite compound: the basal spacing, the layer 

thickness, and the interlayer spacing. The Mg/Al ratio (which is the inverse of x) can 

range from 1 to 5, with 3 being the best in terms of basic activity as noted by other 

researchers (Di Cosimo et al. 1998, Lee et al. 2009).  

Figure 3.5 Hydrotalcite-like structure 

(Hutson and Attwood 2008) 
*M2+ and M3+ are divalent and trivalent cations, An- is an exchangeable interlayer anion 

Hydrotalcites have a broad spectrum of applications in anion exchangers, 

adsorbents, ionic conductors, as well as catalyst supports and precursors (Pérez-Ramírez 

et al. 2007). They as well as their derived metal oxides are used in chemical processes 

such as aldol and Knoevangel condensations, alkylation, Michael addition, and 

transesterification (Kustrowski et al. 2004). 

To take advantage of making specific hydrotalcites for particular applications, 

substituted hydrotalcite-like materials are formed by substituting a certain molar 

58 



www.manaraa.com

 

 

   

 

 

     

  

    

   

 

  

   

   

  

 

percentage of the Mg2+ ions by a divalent ion such as copper, and/or substituting a molar 

percentage of the Al3+ ions by a trivalent ion such as iron or gallium. The substituted 

hydrotalcites that were used in this work have the formula: 

[(Mez
2+Mg1-z) 1-x Alx(OH)2](CO3)x/2•nH2O (3.1) 

where Me2+ = Cu, z = 0.1- 0.2; x = 0.25 and 

[Mg1-x(Mey
3+Al1-y)x(OH)2](CO3)x/2•nH2O (3.2) 

where Me3+ = Ga, Fe or La, y = 0.05 – 0.2; x = 0.25. 

With the substituted hydrotalcites, the recommended 3:1 Mg/Al ratio (also 

expressed as Al/(Al+Mg) = 0.25) will be maintained. For example, the molar ratio for an 

iron-doped hydrotalcite will be Mg/(Al+Fe) = 3:1. The optimum Mg/Al ratio is 

dependent on the target reaction. For soybean oil methanolysis, Mg/Al = 3 gave the 

maximum activity (Debecker et al. 2009). There are various methods of preparing 

hydrotalcites that include: 1) Co-precipitation method, 2) anion exchange, 3) 

reconstruction, 4) hydrothermal, and 5) urea methods (Li et al. 2011). 

The co-precipitation method is the most widely used and is based on the reaction 

of a solution containing the M2+ and M3+ cations in adequate proportions with an alkaline 

solution (Cheng et al. 2012). Lee et al. report that mixed oxides prepared by co-

precipitation have the advantage of less of a leaching problem than the parent 

compounds, stating that proper formulation of the catalyst can overcome the leaching 

obstacle (Lee and Saka 2010).  
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3.1.5 X-ray diffraction 

X-ray diffraction (XRD) is an experimental technique that uses the scattering of 

rays on a material to identify information about its crystal structure and its lattice 

parameters. It can give information on the spacing between lattice planes or layers of 

atoms, using hkl Miller indices.  The size and shape of a unit cell of the material can be 

calculated from the positions of the XRD peaks and the positions of the atoms in the unit 

cell can be determined from the intensities of the diffraction peaks. 

For hydrotalcites, the X-ray diffraction also gives a breadth of information on the 

crystalline sample analyzed such as the d, a, and c parameters to calculate the atom 

positions/separation inside the molecule. 

Indexing of the hydrotalcite XRD pattern is typically done using a hexagonal cell 

with the space group of trigonal symmetry (Brito et al. 2009). The parameter a 

corresponds to the cation-cation distance in the hydroxide (brucite-like) layers, while the 

parameter c refers to the layer thickness (Cheng et al. 2012). It corresponds to three times 

the distance between adjacent brucite-like layers (Brito et al. 2009). Di Cosimo et al. 

indicated that the brucite-like sheets in hydrotalcites can accommodate Al3+ cations 

within a wide compositional range since the a lattice parameter of hydrotalcite samples 

decreased monotonically as the Al content increased (Di Cosimo et al. 1998). The d 

parameter is the interplanar spacing or distance between parallel planes of atoms and 

ions. 

The peaks assigned to the 003 and 110 reflections were used to calculate 

hexagonal parameters a and c. The presence of d003 in the particular position of the XRD 

plot shows the layered structure of the samples. The position of the diffraction plane 
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(003) is used to calculate the c lattice parameter as c = 3d003, whereas the a parameter 

representing the average metal-metal distance in the frame work is calculated from the 

diffraction plane (110) as a = 2d110 (Parida et al. 2012). Comparing the a and c 

parameters, you can tell if synthesis methods were consistent (Cheng et al. 2012). 

3.1.6 Porous Metal Oxides 

Solid base porous metal oxides (PMOs) are hydrotalcite-based catalysts with 

basicities and surface areas that can be tuned by modifying the hydrotalcite chemical 

composition and preparation procedures (Lee et al. 2009, Lestari et al. 2009). They are 

formed by the decomposition of the LDHs at moderate temperatures, producing high 

specific surface areas and reactivity that are useful in catalytic applications. The 

decomposition of the hydrotalcite has two steps: 1) the loss of the interlayer water, 

forming an intermediate structure, and 2) the collapse of the layered structure and 

decomposition of the interlayer anions (Li et al. 2011). The structure and surface 

properties of hydrotalcites and their corresponding mixed oxides depend strongly on 

chemical composition and production methods (Di Cosimo et al. 1998). At the 

calcination temperature, the interlayer water loss and decarbonization occurs with the 

release of CO2 and H2O to form a porous, amorphous structure with larger surface area 

(Figure 3.6) (Antunes et al. 2008, Lee et al. 2009).  
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Figure 3.6 Conversion of hydrotalcite to PMO and regeneration 

(Pérez-Ramírez et al. 2007). 

This calcination process is reversible, and it is important to protect these catalysts 

from water and CO2 after being calcined to prevent them from reverting back to the 

inactive hydrotalcite state. This phenomenon is called the ‘memory effect’, where porous 

metal oxides formed from calcining the hydrotalcite can be restored to the original 

hydrotalcite structure upon contact with water or aqueous solutions containing certain 

anions (Pérez-Ramírez et al. 2007). Reconstruction of the oxide with water vapor or by 

immersion in decarbonated water leads to the formation of meixnerite (Figure 3.6), which 

is similar to a hydrotalcite but has OH- anions in the interlayer instead of the original 

carbonates. This new structure is reported to possess bronsted basic character and can 

catalyze a number of  organic reactions such as the aldol and Knoevenagel condensations, 

and Michael additions (Pérez-Ramírez et al. 2007).  

The calcination temperature is reported to be an important parameter affecting the 

surface basicity of the porous metal oxide, i.e., the site strength, site concentration and 

accessibility (Di Cosimo et al. 1998, Xie et al. 2006, Liu et al. 2007). When testing PMOs 

that were calcined at different temperatures in the range of 400 - 800 °C, Liu et al. found 

that poultry fat conversion in the transesterification reaction increased to a maximum of 

75% with PMO that was calcined at 550 °C and then decreased on catalysts with higher 

calcination temperatures. Thus, they determined 550 °C as their optimum calcination 
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temperature (Liu et al. 2007). Xie et al., on the other hand, found the optimum to be 500 

°C. This variation could be due to their different preparation methods. The hydrotalcite 

used by Liu et al. was purchased from Sigma Aldrich and had a Mg/Al ratio of 2.3. Xie et 

al. prepared their hydrotalcite to a composition of Mg/Al = 3. However, Liu et al. stated 

that calcining at 500 °C generates high activity for the transesterification reaction. Di 

Cosimo also reported that hydrotalcites calcined at 500 °C displayed strong basicity and 

were more active than pure MgO (Di Cosimo et al. 1998). Macala et al. (2008) with 

Mg/Al ratio of 3:1 suggest calcining in air at 460 °C (Macala et al. 2008) for soybean oil 

methanolysis application and this temperature was used for this study. 

3.1.7 Past Studies with Hydrotalcite and PMOs 

Liu et al. used calcined Mg-Al hydrotalcites (PMO) to catalyze the 

transesterification of poultry fat with methanol and found that these PMOs showed high 

activity for triglyceride transesterification with methanol (methanolysis) without signs of 

catalyst leaching. They conducted reaction in a Parr 4590 at 120°C and 100 psi after 

charging the reactants and purging oxygen with N2. Methanol:oil molar ratio was 30:1 

and stirring was 1417 rpm. Catalyst concentration was 10 - 20 wt%. They also reported 

catalytic activity on hydrotalcite samples that were not calcined (Liu et al. 2007). At 

120°C, it took 2 hr to reach 60% conversion, and after 8 hr reaction time, it achieved 93% 

conversion. Brito et al. also reported that the PMO from Mg/Al LDH was highly effective 

in catalyzing the transesterification reaction of waste oil with methanol. They showed 

that these catalysts achieved more than 90% conversion at 120 °C after 6 hr.  Gao et al. 

prepared KF/Ca-Mg-Al hydrotalcites and report that the hydrotalcite-derived PMOs had 

low activities at low temperatures, but could achieve as high as 90% conversion of 
63 



www.manaraa.com

 

 

 

 

  

  

 

 

  

 

  

 

  

soybean oil or acid cottonseed oil when at high temperatures (Gao et al. 2009). Xie et al. 

also found PMO active for methanolysis of soybean oil and achieved a conversion of 

67% after 9hr when reacted at methanol reflux, methanol:oil ratio of 15:1, and catalyst 

amount of 7.5% (Xie et al. 2006). Corma et al. studied the glycerolysis (a different kind 

of transesterification) of triglycerides in triolein and rapeseed oil using Mg/Al 

hydrotalcites at 240 °C for 5 hr and achieved a conversion of 92%. The Al/(Al+Mg) ratio 

of the hydrotalcite used was 0.2 and calcination temperature was 450 °C. 

Studies done by Di Serio et al. (Di Serio et al. 2006) on transesterification of 

soybean oil to biodiesel using heterogeneous basic catalysts show a correlation between 

the yield and the catalyst basicity and structural texture. They show that stronger basic 

sites promote the transesterification reaction at a very low temperature (100°C), while 

medium strength basic sites need higher temperatures to promote that same reaction (Di 

Serio et al. 2007). In addition, they show that their tested magnesium oxide and calcined 

hydrotalcite catalysts were resistant to moisture presence in the reaction environment. In 

their work, the Al-Mg hydrotalcite used had a ratio of ~ 0.2. This catalyst was tested in an 

autoclave of 1 L, using 250 g soybean oil, 114 g of methanol, and 2.5 g of calcined 

hydrotalcite catalyst (CHT). The esteric phase from the reaction products had results of 

94% w/w methyl esters (Di Serio et al. 2006). They also carried out some runs at 180°C 

to test the effect of water in the transesterification of soybean oil with methanol at a water 

concentration of 10000 ppm. Their best magnesium oxide catalyst produced a biodiesel 

yield of 78% in the absence of water and 77% at 10000 ppm. While the calcined 

hydrotalcite produced a biodiesel yield of 92% both in the absence of water and with 

10000 ppm moisture content, showing the catalysts’ tolerance of water at a low level. The 
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Mg/Al ratio used was 5 (Di Serio et al. 2006).  Although it looked promising, the effect 

of water on the catalyst was not tested at higher water compositions and will be evaluated 

in this study. 

These data indicated promising results for the use of PMOs in the proposed study. 

The PMOs used for this project had Mg-Al ratios of 3 since it is reported to have a higher 

basic activity (Lee et al. 2009). 

3.1.8 Selection of Metal Dopants for Catalysts 

All hydrotalcites used were synthesized and characterized for this project since 

only the unsubstituted hydrotalcites are available for purchase commercially. The eight 

PMO catalysts used for this study are outlined in Table 1 below: 

Table 3.1 PMO catalysts for transesterification reactions 

10% Copper-substituted (Cu-10) 5% Gallium-substituted (Ga-5) 

20% Copper-substituted (Cu-20) 10% Gallium-substituted (Ga-10) 

10% Iron-substituted (Fe-10) 5% Lanthanum-substituted (La-5) 

20% Iron-substituted (Fe-20) Unsubstituted (HTC) 

The hypothesis for adding dopants to these catalysts was that adding transition 

metals could generate PMOs with higher basicities and catalyst activity for 

transesterification reactions especially with some initial moisture content. 

Copper was tested as a dopant because copper- based catalysts are often used in 

methanol synthesis and steam reforming of methanol due to their high selectivity and 

activity (Cunha et al. 2012) . Cunha also states that copper dispersion is favored with 
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lower copper loadings. Gallium was tested because Yavuz et al. demonstrated that 

gallium substitution reinforced the layered structure and increased CO2 adsorptivity and 

stability, compared to unsubstituted hydrotalcites (Yavuz et al. 2009). Iron-doped 

hydrotalcites were tested because Macala et al. found them to be much stronger bases 

than the Gallium-doped hydrotalcites, and were effective catalysts for the methanol 

transesterification of triacetin and soybean oil (Macala et al. 2008). Lanthanum was 

tested because, as a rare earth metal, it has been known to improve stability in zeolites 

used as FCC catalysts in the refining industry (Moreira et al. 2010). Lanthanum (III) was 

added in this study to stabilize the Al in the framework of the hydrotalcite and keep it 

from coming out. The reason for evaluating stabilization is because NMR has shown the 

movement of Al in zeolites especially with high temperature steam cite, which could be 

present in our reaction mix if wet sludge is used. 

These catalysts are also known to have large surface areas, which is advantageous 

because it allows more exposure of the active sites. Di cosimo reports hydrotalcite 

surface areas to fall in the range of 65 – 85 m2/g (Di Cosimo et al. 1998). Macala et al. 

show that the Brunauer-Emmett-Teller (BET) surface areas for uncalcined Fe-10 and 

unsubstitued hydrotalcites are 68.6 m2/g and 87.1 m2/g respectively (Macala et al. 2008). 

For calcined species, they report that unsubstituted hydrotalcite, Fe-10, and Fe-20 PMOs 

have BET surface areas of 111.8 m2/g, 123.6 m2/g, and 161.1 m2/g respectively when 

calcined at 460 °C.  The effects of the varying dopants (substituted metals) on the 

conversion will be examined in this project. 

The aim of this study is to find the maximum concentration of water that the 

transesterification of soybean oil can tolerate with the solid PMO catalysts used. The 
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specific goals are to: 1) prepare strong, solid base catalysts with tunable basic properties 

and reactivities by homogeneous introduction of various dopants into the unsubstituted 

hydrotalcite (HTC) lattice, 2) screen these catalysts for highest conversion, 3) determine 

the effect of water at different compositions on these catalysts and 4) determine kinetic 

parameters on the reactions run at 0% water and at the optimal water composition. 

3.2 Materials and Methods 

3.2.1 Chemicals and Gases 

The following chemicals were obtained from Fisher Scientific (Pittsburgh, PA, 

USA):  high performance liquid chromatography (HPLC)-grade methanol (Acros 

Organic, 99.9%), soybean oil (Best Yet Vegetable Oil), magnesium chloride hexahydrate, 

MgCl2.6H2O (99%), aluminum chloride hexahydrate, AlCl3.6H2O (99%), sodium 

carbonate, Na2CO3 (100.3%), copper (II) chloride dihydrate, CuCl2.6H2O (99%), iron 

(III) chloride hexahydrate, FeCl3.6H2O (99%), lanthanum (III) chloride hexahydrate, 

LaCl3.6H2O (99%), and sodium hydroxide, NaOH (99.4%). Triolein, 1,3-diolein, 

monoolein, tricaprin, and MSTFA were purchased from Sigma Aldrich and used to 

prepare calibration standards. Soybean oil was obtained from a local grocery store in 

Starkville, MS. All the gases used (He, H2, and air) for gas chromatography were of high 

purity grade and distributed by NexAir (Columbus, MS, U.S.A.). All chemicals, 

standards, and gases were used as received without further purification. 

3.2.2 Apparatus 

Figure 3.7 - Figure 3.10 show some of the apparatus used in this study: 

1. 450ml batch Parr® reactor 
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Figure 3.7 Parr 5522 - 450ml reactor 

(Parr Instrument Company, Moline, IL, U.S.A) 

2. Rotary evaporator 

Figure 3.8 Büchi R-205 rotary evaporator 

(Brinkmann Instruments, Inc., Westbury, NY, U.S.A.) 
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3. Vacuum filtration set-up 

Figure 3.9 Gast Oil-less Vacuum pump set-up for catalyst filtration 

(Fisher Scientific, Pittsburgh, PA, USA) 

4. Chemglass 1000ml reactor set 

Figure 3.10 1000ml 3-necked reactor equipped with stirrer and temperature controller 

(Chemglass Inc., Vineland, NJ, USA) 

3.2.3 Catalyst Preparation 

The PMO catalysts used for the transesterification were synthesized in a 

Chemglass 1000 ml Process Reactor System (Figure 3.10) using the co-precipitation 

method (Macala et al. 2008). Each catalyst was characterized using X-ray diffractography 
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to ensure that hydrotalcite compound and no other phases were formed. The catalysts 

were ground to powder form and stored in air-tight vials to avoid water and CO2 

poisoning. Catalysts were freshly calcined for an hour at 460°C before use, to remove 

moisture and provide the best activity. 

3.2.3.1 Protocol for the Mg/Al hydrotalcite (HTC) preparation 

The hydrotalcite was prepared using a method similar to that used by Macala et 

al. (Macala et al. 2008). Hydrotalcite solids were prepared to have a molar ratio of 

Mg/(Al+dopant) = 3. A solution of 30.5 g (0.15 mol) of MgCl2.6H2O in 125 ml of 

distilled water was combined with a solution of 12.1 g (0.05 mol) of AlCl3.6H2O in 125 

ml of distilled water and added drop wise to 375 ml of a Na2CO3 (5.3 g, 0.05 mol 

solution) at pH = 10 and 60°C under vigorous stirring. The pH was kept constant by 

adding appropriate volume of 1M NaOH during precipitation. The addition of the 

combined solution took almost 3 hours. The suspension obtained was kept at 80°C for 24 

h, and then filtered and washed thoroughly with abundant amount of distilled water until 

the pH was 7. This was checked using a Whatman indicator paper strip. This hydrotalcite 

precipate was exchanged with carbonate at 80°C by re-suspending it in 0.02 M Na2CO3 

solution to remove any remaining chloride ions from the interlayer, and left to age for 48 

h. The resulting precipitate was dried at 120°C for 24 h, and then calcined overnight at 

460°C to form the porous metal oxides. The dried catalyst was crushed in a mortar and 

pestle and stored in a glass vial till use. 

If a divalent cation, Me2+ was substituted, then the number of moles of (Mg2 + 

Me2+) would sum up to a total of 0.15 moles. Likewise, when a trivalent cation, Me3+, 

was substituting Al3+, the number of moles of (Al3+ + Me3+) would sum to a total of 0.05 
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moles to keep the recommended 3:1 divalent:trivalent cation ratio. Pictures of a sample 

hydrotalcite and PMO are shown in Figure 3.11 and Figure 3.12. 

Note: For copper, additional precautions were taken to ensure that temperature did 

not exceed 70°C during aging. Also, lanthanum was left to age for 7 days so its larger ion 

radii could be properly inserted into the lattice. 

Figure 3.11 Filtered and dried Fe -10 hydrotalcite 

Figure 3.12 Ground, calcined Fe-10 hydrotalcite 
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3.2.4 Catalyst Characterization 

3.2.4.1 Crystallinity 

The uncalcined hydrotalcite was characterized for crystallinity by powder X-ray 

diffraction (XRD) performed on a Rigaku Ultima III diffraction system using Cu Kα 

radiation (k=1.54059 Å), 40 kV and 44 mA to identify the crystalline phases. Analysis 

was conducted with a step size of 0.02 degrees over a 2θ range of 3 - 70°  with a scanning 

speed of 5°/min. The resulting patterns were compared to reference patterns for 

hydrotalcite mineral. This characterization is to check that the hydrotalcite phase was 

formed properly and only that phase was present. 

3.2.4.2 Surface area 

The PMO surface area characterization was performed using the Brunauer, 

Emmett, Teller method (BET) method by nitrogen adsorption which measures the 

specific surface area of a material by adsorption/desorption of nitrogen on a solid surface 

at 77 K (Brunauer et al. 1938). The instrument used was the Tristar II 3020 system at the 

Micromeritics Analytical Services lab in Norcross, GA. This characterization was done 

on the best catalyst before and after reaction to ensure that any attrition in the reactor was 

not causing increase in the surface area. 

3.2.5 Experimental Design 

The investigative procedure for the feasibility of using wet sludge to produce 

biodiesel will be evaluated using the flowchart shown in Figure 3.13 below: 
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Figure 3.13 Flowchart illustrating tasks for the project 

3.2.5.1 Catalyst screening 

Catalyst screening tests based on highest conversions to pick the best catalysts 

were conducted at the same reaction conditions for 8 catalysts. The eight hydrotalcite-

based catalysts as listed in Table 1 were synthesized and tested with the 

transesterification procedure described above in section 3.2.6.2. On the basic Parr® set 

up, both oil and methanol were charged at the same time before heating, and the start of 

the reaction was not tracked due to the 20 min heat up time. The tests were conducted at 

150 °C at 240 rpm stirring for 1 hour. These tests were performed in duplicates. After the 

reaction, the transesterification products were treated and analyzed for the conversion of 

soybean oil. 
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3.2.5.2 Effect of Temperature 

The influence of temperature was studied on the dry transesterification of soybean 

oil with methanol using 2 wt% of the best catalyst (Fe-20 PMO), 10g oil and 100ml 

methanol and stirring speed of 240 rpm. Four temperatures were studied to test the effect 

of temperature on oil conversion: 120 °C, 150 °C, 180 °C and 210 °C. 

3.2.5.3 Effect of Water on Transesterification of Soybean Oil 

For studying the effect of water, the transesterification reaction was modified by 

adding the corresponding mass percentage of water (based on oil mass) to the 10g of 

soybean oil. The water compositions were 1, 5, 10, and 20% (w/w). The effect of water 

on the transesterification reaction with respect to substrate conversion and FAME yield 

was determined. 

3.2.5.4 Kinetics on the Transesterification of Soybean Oil with and without water 

The kinetic transesterification reaction of soybean oil was studied at 0% and 10% 

water content at 150°C starting out with 10g oil and 100ml methanol using the best 

catalyst, Fe-20 PMO. 

3.2.6 Experimental Procedure 

All reactions were done in duplicates 

3.2.6.1 Soybean oil characterization and GC analysis 

Soybean oil was obtained from the local grocery store and used without further 

purification. It was characterized for initial triglyceride and ester content by gas 

chromatography using a Varian 3600 GC with Rtx®-Biodiesel TG column (Restek 

Corporation) equipped with a flame ionization detector (FID). The specific method used 
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to analyze all samples for glyceride content is discussed in the Analytical Method section 

of this chapter. 

3.2.6.2 Non-kinetic transesterification reaction procedure 

Prior to each run, the PMO catalyst was freshly calcined at 460°C for an hour and 

cooled in a dessicator containing NaOH to protect from carbon dioxide and moisture 

adsorption. Ten grams of soybean oil and 100 ml of methanol were charged into the 450 

ml Parr® batch reactor (Figure 3.7), and 0.2 g (2 wt% based on oil) of freshly calcined 

catalyst was added. Reaction temperature was set for 150°C and stirring for 240 rpm. The 

vessel took about 23 minutes to heat up to 150°C and was left to run for 1 hour after it 

reached the set point of 150°C. 

After an hour, the reaction was quenched by cooling the reactor with an ice bath. 

The reactor contents were transferred to a 250 ml beaker and the reactor was rinsed with 

heptane and pooled with the contents in the beaker. The reaction products were 

transferred to a 250 ml round bottom flask and methanol was removed from the products 

at 45°C under a vacuum pressure of 300 mbar using the Büchi rotary evaporator (Figure 

3.8). The catalyst was removed by vacuum filtration of the product using a 30 ml 

Buchner funnel and washed with heptane on the filter (Figure 3.9). 

3.2.6.3 Reactor modifications for kinetics of transesterification 

Kinetic experiments for the transesterification reaction were performed on 

soybean oil with the best catalyst determined from the screening tests, using a modified 

set-up.  
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Figure 3.14 Schematic and picture of unmodified 450 ml Parr® batch reactor with 
temperature and pressure control interface used for catalyst screening in 
transesterification of soybean oil 

 

 

 

 

    

 

 

 

 

When the first, basic set-up described in section 1.2.6.2, would not work due to 

long heat-up time, a first modification was made to allow accurate calculation of kinetics, 

but did not work for reasons described below. After a series of further modifications to 

the reactor, a final set-up was obtained. 

3.2.6.3.1 First modification to 450ml batch Parr® reactor for kinetic reactions 

The simple set-up of the 450 ml Parr® reactor (Figure 3.14) was used for the 

catalyst screening since all catalysts were being screened at the same conditions and not 

being studied for kinetics. However, the inability to control the start time of the reaction 

with the heater’s inconsistent heating times indicated that the simple set-up of the Parr® 

batch reactor would prevent the accurate determination of reaction kinetics as it could 

take as high as 23 minutes to reach a set point of 150 °C. 
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We proposed to modify this set-up by charging the reactor with methanol and 

catalyst first, heating to the desired temperature, and then using a pressure-equalizing 

loop added to two ports on the reactor to use the methanol pressure entering the loop on 

one end of the loop to push down oil in a reservoir on the other end of the loop into the 

reactor while the stirrer mixed the contents. After the addition, the timer was started to 

track the reaction time. The parts needed to change the reactor set-up were assembled as 

shown in Figure 3.15 and the description is as follows: 

Figure 3.15 First modification to reactor 

On two vacant ports (at the reactor head) that were previously plugged, a loop of 

stainless steel tubing was used to connect the reactor opening at one port to the oil 

reservoir (made of 3/8-inch tubing), which was connected to the reactor opening at the 

second port. Valves were added just before the entrance to both ports. The assumption 

was that opening the valve on the first port would release the pressurized methanol vapor 

(formed when the reactor had come to the temperature set point with methanol in it) to 
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flow toward the oil reservoir and push oil into the reactor when the valves before and 

after the oil reservoir were opened consecutively.  

This set-up eventually did not work because there was concerns about not getting 

all the oil into the reactor, losing some of the reactant mixture to the pressure-equalizing 

loop, improper introduction of oil into the methanol body because the methanol vapor 

would disperse it everywhere (this dispersion was neither uniform nor could it be 

controlled between replicates), and not being able to conduct the reaction completely in 

the liquid phase. Hence, there was a need to find another method to add the 2nd reactant in 

so all the expected amount introduced would react. 

3.2.6.3.2 Final modification to 450ml batch Parr® reactor for kinetic reactions 

Figure 3.16 Final modification to 450-ml Parr® reactor used for final kinetic study in 
transesterification of soybean oil 

a) front view b) side view c) sample vials 

To get accurate kinetic information, a final modification was made to the batch 

reactor such that soybean oil and catalyst in the reactor were heated up to the set point 

before addition of methanol. This required the addition of a methanol reservoir, and a 
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tubing connection for additional pressure supplied by a nitrogen tank. Similar to the 

previous modification, a methanol reservoir was made from 14 inches of 1-inch 316 

stainless steel tubing and was added to one of the reactor’s ports with a valve between. 

The other port was connected to the reactor while the tubing loop had a tee in it that had a 

tubing connection to the nitrogen tank. 

3.2.6.4 Kinetic transesterification procedure with and without water 

The kinetic transesterification reaction of soybean oil was studied at 0% and 10% 

water content at 150°C starting out with 10g oil and 100ml methanol using 0.2g of the 

best catalyst, Fe-20 PMO. The reactor was charged with soybean oil and the catalyst. To 

avoid oxidation of the reactants, nitrogen was used to purge the reactor (after sealing) 

with a pressure of 700 psi and then the reactor was heated to 150 °C. Stirrer was turned 

on at 500 rpm. Once at 150 °C, the valve for the line from the nitrogen tank (via tee) was 

first opened at 800 psi pressure to push all the methanol down into the reactor after which 

the valve between the methanol reservoir and the reactor was opened next. The reaction 

time was started. A sample was taken for the 0 min sample and 6 more samples were 

taken at 10-minute intervals.  A 60ml vial containing 30ml of methanol placed in a 

beaker of ice was used to collect the sample to prevent methanol vapor loss when the 

sample came out of the reactor from high pressure to atmospheric pressure. To do this, 

the metal 1/8-inch tubing was inserted through the silicone/Teflon septum of the 60ml 

vial until it was below the level of the cold liquid so the vapor would cool and condense. 

The nitrogen supply was left on during reaction to maintain constant pressure in the 

reactor and keep reactants in the liquid phase. Figure 3.16 shows the modified reactor and 

the sample vials used. 
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After the reaction, the volume of each sample was measured, and then methanol 

was evaporated using a Turbovap since the glyceride concentrations would be measured 

on an oil basis. The dried residual lipids were weighed and 2 portions were taken out: one 

was dissolved in a toluene diluent containing 100ppm BHT and 200ppm DCB, which 

was the internal standard used for FAME analysis on the Agilent 6890 GC (Figure 3.17). 

The second portion was derivatized and analyzed using high temperature gas 

chromatography (GC) with the Varian 3600 GC (Figure 3.18) for quantification of 

FAMEs and glycerides. 

Figure 3.17 Agilent 6890 series GC system with DA Stabilwax column for quantifying 
FAMEs and FFA Initial and final temperatures of 50 °C and 250 °C 

Figure 3.18 High temperature GC, Varian 3600 
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3.2.7 Analytical Method 

3.2.7.1 Derivatization Method 

Derivatization is the chemical change of a compound to a new compound that has 

more suitable properties for an analytical method. In this case, glyceride samples had to 

be derivatized before analysis on the GC to be accurately quantified because they have a 

low volatility which will affect the reproducibility of the peak areas and shapes. Thus, 

derivatization improves the resolution and analyte response during chromatography. A 

silylation process was used to derivatize the glyceride by adding N-methyl-N-

(trimethylsilyl)-trifluoroacetamide (MSTFA) to the sample. The MSTFA then replaces 

the active hydrogen on the glycerides with silyl groups, making it more volatile and 

improving the resolution. 

The proposed method that was selected for analyzing the glyceride content of the 

sample is the “ASTM D6584 Test Method for Determination of Free and Total Glycerin 

in B-100 Biodiesel Methyl Esters By Gas Chromatography” (ASTM). This test is 

typically used to quantify glycerol and glycerides in biodiesel samples. 

3.2.7.1.1 Calibration Preparation for derivatization standards 

FAMEs mix C8-C24 of saturated, mono-unsaturated and poly-unsaturated fatty 

acid methyl esters (Supelco, Bellefonte, PA) were used to calibrate for FAME 

compounds with internal standard of dichlorobenzene (DCB). Triolein, 1,3-diolein, 

monoolein purchased from Sigma Aldrich were used as glyceride reference compounds 

for the high temperature GC calibration. A 5-level calibration standard containing these 

glycerides and tricaprin as an internal standard was made and derivatized. The reaction 

products were also converted to volatile trimethylsilylether derivatives with N-methyl-N-
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(trimethylsilyl)-trifluoroacetamide (MSTFA), using a modified form of the method 

described in the ASTM D6584 method for Determination of Free and Total Glycerin in 

B-100 Biodiesel Methyl Esters (ASTM). After 20 min at room temperature, the products 

were dissolved in chloroform and were analyzed by high temperature gas 

chromatography (GC). 

3.2.7.1.1.1 Procedure for Standard Preparation and Derivatization 

Triolein, diolein, monoolein were obtained from Sigma Aldrich and derivatized 

with tricaprin as an internal standard before making calibration samples at 5 levels from 

500 μg/ml to 31.25 μg/ml. For the 500 μg/ml calibration standard, one hundred and 

twenty five microliters (125 µL) of 8mg/ml tricaprin in pyridine was added to 400 µL 

each of triolein, diolein, and monoolein dissolved in pyridine at concentrations of 5000 

μg/ml. One hundred microliters (100 µL) of MSTFA was added, and the mixture was 

allowed to sit for at least 20 minutes, after which 575 µL of pyridine and 2000 µL of 

chloroform were added to achieve a total volume of 4000 µL (4ml). This gave a tricaprin 

internal standard concentration of 250 µg/ml. For the remaining 4 levels, the volumes of 

triolein, diolein, and monoolein were appropriately reduced and the chloroform level was 

increased appropriately while keeping the total volume at 4ml and the tricaprin internal 

standard concentration constant at 250 µg/ml. 

3.2.7.1.1.2 Procedure for Sample Derivatization 

All glyceride samples were derivatized using this modified ASTM D6584 method 

before analysis. One hundred and twenty five microliters (125 µL) of 8mg/ml tricaprin in 

pyridine and 100 µL MSTFA were added to the mass being analyzed (~ <10mg), allowed 
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to sit at least 20 min, and diluted with 3,775 µL of plain chloroform before being filtered 

and injected on the high-temperature GC. Accuracy of the method was confirmed by 

using the calibration obtained on the GC with the standards prepared to calculate a known 

concentration of soybean oil derivatized using the method above and it matched. All 

kinetic samples were derivatized and the GC analysis provided a quantitative analysis of 

the triglyceride (TG), diglyceride (DG), monoglyceride (MG) and FAMEs needed for the 

kinetic study. 

3.2.8 Gas Chromatograph and method 

3.2.8.1 Gas Chromatograph for FAME analysis 

The concentrations and amounts of FAMEs in the chloroform phase were 

analyzed and quantitated using the Agilent GC 6890N gas chromatograph equipped with 

a flame ionization detector (GC-FID) (Agilent, Santa Clara, CA, USA. Approximately 4 

mg of crude extract was dissolved in 1ml standard solution (toluene diluent containing 

100 µg/ml BHT and 200 µg/ml DCB, which was the internal standard for GC analysis). 

One µL of this solution was injected in splitless mode on an Agilent 6890 Gas 

Chromatograph (Agilent Technologies, Santa Clara, CA) at a constant injector 

temperature of 260 °C. The GC was equipped with a 30 m × 0.25 mm ID Restek 11023 

Stabilwax DA Capillary Column (Restek, Bellefonte, PA) having a 0.25-m film 

thickness. The GC oven was programmed at an initial temperature of 50 °C, held for 2 

min, ramped up to 250 °C at 10 °C min-1, and held for 18 min, giving a total of 40 min 

analysis time.  A flame ionization detector (FID) operating at 260°C and using helium 

carrier gas (14 psi, 53.5 mL/min flow rate) was used to detect the FAMES. The 

instrument was calibrated using a standard FAME mixture containing 14 FAMEs from 
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C8 – C24 (Sigma-Aldrich, St. Louis, MO). The total FAME concentration obtained was 

used to estimate the total biodiesel yield from each reactor set. 

3.2.8.2 High Temperature Varian Gas Chromatograph for glyceride analysis 

The high temperature GC was used to characterize the soybean oil and to analyze 

the glyceride content in the reaction products for quantification. The equipment used was 

the Varian 3600 GC (Figure 3.18) equipped with a flame ionization detector (FID). The 

column used was the ZB-5HT Inferno (Phenomenex, Torrance, CA, USA) having 

dimensions of 15m, internal diameter of 0.32mm and film thickness of 0.10m, and 400 

C maximum temperature. The initial and final injector temperatures will be 50°C and 

380°C respectively and the FID temperature of 380°C in accordance with the ASTM 

Method D 6584 (ASTM). The GC oven was programmed at an initial temperature of 

50°C for 1 minute, then ramped to 180°C at 15°C/minute, to 230°C at 7°C/minute, and 

then to 370°C/minute at 10°C/minute was held constant at 380°C for 5 minutes. 

3.2.9 Conversion Calculations 

3.2.9.1 Conversion calculation for Catalyst Screening 

The molecular weight of soybean oil is assumed to be 879.38 g/mol, assuming 

each of the alkyl group is linoleic acid (the largest fatty acid in the soybean oil 

composition) and that soybean oil is trilinolein. 

The stoichiometry of the transesterification reaction below was used to relate the 

number of moles of FAMEs to the conversion of substrate given the relative GC response 

factor and the ratio of the peak areas. 
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Figure 3.19 The transesterification reaction with methanol 

Creating a parameter, α, on the assumption that: 

𝑚𝑜𝑙𝑒𝑠 𝐹𝐴𝑀𝐸 (𝑛𝐹𝐴𝑀𝐸) 𝐴𝑟𝑒𝑎 𝑜𝑓 𝐹𝐴𝑀𝐸 
𝛼 = = ∗ 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐺𝐶 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 (3.3) 

𝑚𝑜𝑙𝑒𝑠 𝑇𝑟𝑖𝑔𝑙𝑦𝑐𝑒𝑟𝑖𝑑𝑒 (𝑛𝑇) 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑇𝑟𝑖𝑔𝑙𝑦𝑐𝑒𝑟𝑖𝑑𝑒 

Having calculated the relative GC response factor = 0.4, we calculated the 

conversion (f) using the following equations: 

𝑛𝑇 = 𝑛𝑇
0 ∗ (1 − 𝑓) (3.4) 

𝑛𝐹𝐴𝑀𝐸 = 3𝑛𝑇
0𝑓 (3.5) 

where 𝑛𝑇
0 is the initial number of moles of triglyceride, 𝑛𝑇 is the number of moles of 

triglyceride, 𝑓 is the conversion, 𝛼 is ratio of moles of fame to triglyceride. 

Thus, 

𝛼 = 𝐴𝑟𝑒𝑎 𝑜𝑓 𝐹𝐴𝑀𝐸 (𝑛𝐹𝐴𝑀𝐸) (3𝑛𝑇 
0𝑓) 3𝑓 

 0.4 ∗ = = = 
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑇𝑟𝑖𝑔𝑙𝑦𝑐𝑒𝑟𝑖𝑑𝑒 (𝑛𝑇) 𝑛𝑇 0∗(1−𝑓) (1−𝑓) 

(3.6) 

Conversion, f, is given by: 

𝛼 
𝑓 = 

3+𝛼 
(3.7) 
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Thus, the fractional conversion of substrate was calculated from the peak area. 

3.2.9.2 Conversion calculation for Kinetics 

Samples were weighed, the internal standard was added to a portion which was 

derivatized and then analyzed on the GC. The GC analysis provided a quantification of 

the triglyceride (TG), diglyceride (DG), monoglyceride (MG), and FAMEs 

concentrations needed for the kinetic study. 

3.3 Results 

3.3.1 Soybean oil Characterization 

The results obtained from the GC run were compared with a reference 

chromatogram (Figure 3.20) from the ASTM Method D 6584, Determination of Free and 

Total Glycerine in B-100 Biodiesel Methyl Esters, to identify retention time of esters and 

triglycerides. Figure 3.21 shows the GC trace of soybean oil before transesterification, 

which has strong peaks in the triglyceride region (22.5 – 25 minutes) and little or no 

peaks in the methyl ester region (8 – 11 minutes). In Figure 3.22, the GC trace of the 

transesterification product (FAMEs) after methanol had been evaporated shows strong 

peaks in the methyl ester region and a significant decrease in the peak size of the 

triglycerides, which indicates significant substrate conversion. To make a quantitative 

analysis of conversion, the ratio of the integrated areas under the methyl ester to 

triglyceride peaks was used. 
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Figure 3.20 Reference chromatogram from ASTM method D6584. 

Figure 3.21 Gas chromatograph trace of soybean oil prior to transesterification. 
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Figure 3.22 Gas chromatograph trace of soybean oil after transesterification 

3.3.2 Catalyst Characterization 

3.3.2.1 XRD 

Our goal was the preparation of stable, strong solid base catalysts with tunable 

basic properties and reactivities by homogeneous introduction of various dopants into the 

HTC lattice. All samples exhibited the characteristic reflections of the hydrotalcite-like 

structure, which included sharp, symmetric reflections for the (003), (006), (110) and 

(113) planes, and also broad and asymmetric reflections for the (102), (105), and (108) 

planes as usually observed (Cheng et al. 2012, Pavel et al. 2012). Only the hydrotalcite 

phase was formed, no other phases present. A sample XRD is shown in Figure 3.23.  For 

the substituted hydrotalcites, that indicated that the metal ions had been incorporated into 

the layers.  The a and d parameters of the compounds were calculated and presented in 

the Table 3.2. 
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Figure 3.23 A sample XRD of the unsubstitued hydrotalcite sample 

Table 3.2 d-spacing and a parameter of the catalysts used for the transesterification of 
soybean oil 

Catalyst 
Date Xrd 
Analyzed d003 (Å) d110 (Å) a c 

cu 10 1/22/2010 7.7553 1.5335 3.067 23.2659 

cu20 3/10/2010 7.6913 1.5305 3.061 23.0739 

cu20 2/17/2010 7.6888 1.5286 3.0572 23.0664 

ga5 4/15/2010 7.7697 1.5336 3.0672 23.3091 

ga10 4/13/2010 7.7424 1.5314 3.0628 23.2272 

fe10 4/15/2010 7.7704 1.535 3.07 23.3112 

fe20 4/12/2010 7.7416 1.535 3.07 23.2248 

la5 4/12/2010 7.8103 1.5359 3.0718 23.4309 

ht 2/17/2010 7.7015 1.5313 3.0626 23.1045 

Fe 20 A 10/19/2012 7.728 1.5345 3.069 23.184 
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These values are similar to those for hydrotalcite materials found in literature 

(Pavel et al. 2012). From these results, it was observed that the a parameter of the metal-

doped hydrotalcites remained very similar to the unsubstituted hydrotalcite (HTC), 

indicating that the metal cations were properly inserted. Pavel et al. also observed that the 

a cell parameter for their substituted samples was close to that of the unsubstituted HT 

(a=3.05 ± 0.01Å), showing no variation in the mean intermetallic distances in the brucite-

like layers and corroborates these results. This was considering the low transition metal 

cation content that was in the samples (Pavel et al. 2012). Pavel et al. also noted that the 

specific surface area of the unsubstituted mixed oxide decreased from 224 m2/g to a range 

of 161 – 213 m2/g upon introducing the transition metal cations in the structure, e.g. 

CuMgAlO had slightly lower surface area than FeMgAlO. However, Macala et al. 

observed that the doped PMOs had larger surface areas than the undoped PMOs (Macala 

et al. 2008). 

Hydroxides of ions of same valency as Mg or Al and having radii differing by 

about 15% (Hume-Rothery rules) are expected to form a solid solution with HTC. While 

the substitution of Cu for Mg (RMg2+ = 0.72 Å, RCu2+ = 0.73 Å, relative size difference = 

1.4%) and Fe or Ga for Al (RFe3+ = 0.55Å, RGa3+ = 0.62 Å, RAl3+ = 0.54 Å, relative size 

differences for Fe and Ga with respect to Al are 1.9 and 14.8% correspondingly) is 

expected to be isomorphous, the doping of HTC with Lanthanum (La) is more 

complicated due to a large difference in the size of the cations (RLa3+ = 1.03Å, RAl3+ = 

0.54 Å). The value of the ratio RLa3+/ROH‾ = 0.752 (compared to RAl3+/ROH‾ = 0.394 or 

RMg2+/ROH‾ = 0.526) suggests that La3+ ion is significantly larger than an interstitial 

octahedral site formed by 6 OH‾ groups of the lattice and probably is not incorporated 
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into it but just finely dispersed throughout. However, elevated temperatures where the 

expansion of structure provides greater tolerance for size variation favor substitution of 

smaller ions by larger ones. Thus, an attempt was made to substitute only 5 mol% of La 

for Al and increase the duration of the aging process at 80°C to 7 days instead of 2 days. 

However, La ions were not successfully incorporated into the lattice as evidenced by the 

size of the lattice parameter (a) of La5-HTC being almost the same size as the HTC 

instead of larger (Table 8.2). A separation of La2CO5 and La2(CO3)2(OH)2 phases, similar 

to what was found by Bîrjega et al. (Birjega et al. 2005) was possibly what occurred. (All 

values of ionic radii for octahedral environment were taken from Handbook of Chemistry 

and Physics (Lide 2010 CD-ROM Version)). 

3.3.2.2 Surface Area 

The surface area obtained on Fe 20 catalyst was 178 m2/g which compares well 

with the 161 m2/g obtained by Macala et al. on their Fe-20 catalyst  (Macala et al. 2008) 

shows that the Brunauer-Emmett-Teller (BET) surface areas for uncalcined Fe-10 and 

unsubstitued hydrotalcites are 68.6 m2/g and 87.1 m2/g respectively. For calcined species, 

they show that unsubstituted, Fe-10, and Fe-20 have BET surface areas of 111.8 m2/g, 

123.6 m2/g, and 161.1 m2/g respectively when calcined at 460°C. 

Based on consistent preparation methodology and similarity in d-spacings and a 

parameters, the surface areas of all 8 catalysts were not expected to have significant 

variation, especially between substituted catalysts, since the aim of the screening was to 

identify the most active catalyst. 
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3.3.3 Catalyst Screening 

The best catalysts were selected based on highest conversion of soybean oil. The 

results of the conversion-based screening tests on the 8 porous metal oxides are shown in 

Figure 3.24 below with the Fe-20, unsubstituted hydrotalcite, and Cu-10 catalysts having 

conversions of 44%, 41%, and 40% respectively. The order of catalyst conversion from 

highest to lowest was: Fe 20 >Unsustituted > Cu10 > Fe 10 > Ga 10 > Cu 20 > Ga 5 > La 

5. 

Figure 3.24 Percent conversion of soybean oil transesterification with 8 porous metal 
oxides. 

Finding Fe-20 substituted porous metal oxides as the most active is similar to 

results found by Macala et al. (Macala et al. 2008) from testing six porous metal oxides 

on the transesterification of triacetin. The porous metal oxides used were Fe-substituted, 

Ga-substituted, and unsubstituted. For this transesterification, 4.4 ml triacetin was 

combined with 5.6 ml anhydrous methanol (6:1 methanol to triglyceride molar ratio), and 

0.2 wt% catalyst at 60°C. The results showed that the undoped PMO had the least activity 
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after 60 minutes (~18% conversion), while the Ga 5 and Ga 10% gave approximately 

40% conversion and 80% conversion respectively. However, the Fe doped porous metal 

oxides were much more active than either the undoped or the Ga doped PMOs. The 5%, 

10% and 20% Fe doped PMOs gave approximately 99% conversion at the same 

conditions. 

For triacetin, Fe 10% was most active. It is important to note that triacetin is 

completely miscible with methanol even at room temperature (Liu et al. 2007), unlike 

soybean oil, and that property would contribute to the higher conversions observed as 

compared to the reactions with soybean oil in this case. 

3.3.4 Effect of Temperature 

As mentioned in the introduction, increasing temperature is usually beneficial on 

the reaction rate and substrate conversion, which is seen in the results as temperature was 

increased from 120 °C to 180°C (Figure 3.25): 

Figure 3.25 Effect of temperature on the transesterification conversion of soybean oil 
on Fe 20 catalyst at anhydrous condition. 
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At 120 °C, there was ~2% conversion in 1hr, whereas at 210 °C it was 83% 

conversion in 1 hour. Experiments at 180°C on the Fe-20 catalyst produced 

approximately 65% conversion, and 83% conversion was obtained at 210 °C. The 

temperature profile in Figure 3.25 shows that these catalysts can tolerate high 

temperatures and maximum conversion can be achieved at a greater temperature, as also 

seen in literature (Macala et al. 2008). However, it is important to keep in mind that the 

higher temperatures will have higher costs associated with biodiesel production due to a 

more expensive reactor with insulation and also because the reactor would need to be 

rated for higher pressures to keep the methanol in the liquid phase; Liu et al. states than 

an increase in temperature from 120 to 170 °C can double the estimated costs while an 

increase from 60 to 120 °C would cause an increase of approximately 30% (Liu et al. 

2007) and operating temperature should be selected based on economic and sensitivity 

analyses. 

3.3.5 Transesterification of Soybean Oil with and without water 

The results of water tests done on the most active catalyst, Fe-20, and three other 

porous metal oxides, Fe-10, Cu-20, and unsubstituted hydrotalcites are shown in Figure 

3.26 - Figure 3.29. 

94 



www.manaraa.com

 

 

 

  
 

 

 

  
 

Figure 3.26 Effect of water content on the transesterification conversion of soybean oil 
on Fe 20 catalyst at 150°C. 

Figure 3.27 Effect of water content on the transesterification conversion of soybean oil 
on unsubstituted catalyst at 150°C. 
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Figure 3.28 Effect of water content on the transesterification conversion of soybean oil 
on Fe 10 catalyst at 150°C. 

Figure 3.29 Effect of water content on the transesterification conversion of soybean oil 
on Cu 20 catalyst at 150°C. 

In Figure 3.26, the most active, catalyst, Fe-20, appears to have the largest 

vulnerability to water. There is a 45% decrease in conversion from 44% conversion with 

no water present to 24% conversion with moisture content of 1%. It gives 6% conversion 

with water content of 20%, which is an 86% decrease in conversion from the original 

anhydrous condition. The decrease in conversion with the undoped catalyst as water 
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content is increased is less steep than the Fe-20 but at 20% water content, its overall 

decrease in conversion is the same as Fe-20, at 88%. 

The Fe-10 catalyst appeared to have a slight increase at 1% water content but had 

an 83% decrease in conversion from its original 35% conversion in the absence of water, 

to 6% conversion at 20% water content. The Cu-20 catalyst appears to have the highest 

tolerance of water at 20% water content. Similar to the Fe -20 catalyst, the conversion 

declined 45% when 1% water was introduced but declined 76% from 0% to 20% water 

content.  

We presume that the effect of water acts in 3 ways: 1) deactivating the active site 

of the catalyst when present, 2) blocking access of the oil and methanol to the active sites, 

and 3) substituting the anions from the water molecules into the interlayer space, thus 

converting the porous metal oxide back to its precursor (hydrotalcite) which has less 

surface area and is not as active. This is the memory effect mentioned in the introduction 

(section 1.1.4). Liu et al. report that “water can also be formed by the reaction of brønsted 

sites with the alcohol molecules to produce the active methoxide species. Free fatty acids 

can then react with basic sites on the catalyst neutralizing them for further reaction. In 

addition, water itself may cluster around strong base sites and/or activated methanol thus 

limiting their contact with TGs through hydrophobic repulsion” (Liu et al. 2007) and this 

could be an occurrence to explain the deactivation. 

Overall, all catalysts had similar patterns of conversion at the varying water 

compositions. However, the conversions obtained in the presence of water between 0 and 

20% were poor as these water concentrations are nowhere close to the water 

concentration in sludge. 
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Compared to work done by Di Serio et al. at 180°C showing no change in 

conversion at 10000 ppm (1%) water, our results obtained at 150°C indicate that there is 

a 41% decrease in conversion at the 1% water level of the unsubstituted hydrotalcite (Di 

Serio et al. 2007). 

3.3.6 Kinetics on the Transesterification of Soybean Oil with and without water 

There was some difficulty in completing the mass balance on the triglyceride 

component most likely due to strong adsorption on the catalysts. Thus, a mole balance on 

the remaining components: diglycerides, monoglycerides and FAMEs were used to 

calculate the mole balance for the triglycerides. Literature suggests pseudo first-order 

kinetics at large molar excess of alcohol (Noureddini and Zhu 1997, Kamarudin et al. 

1998) and second-order kinetics at lower alcohol excess level based on work with 

kinetics of acid- and alkaline-catalyzed. 

First-order kinetics was assumed for this study. The kinetic data obtained was 

fitted to a first order model based on the rate of decrease of triglyceride (TG). The rate 

constant was determined based on decreased amount of the triglycerides starting with the 

expression: 

(3.8) 

which can be written as 

(3.9) 

where [TG] is the concentration of triglycerides at a given time, t. Integrating, 

𝑙𝑛[𝑇𝐺, 0] − 𝑙𝑛[𝑇𝐺, 𝑡] = 𝑘𝑡 (3.10) 
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Rearranging, 

[𝑇𝐺,t]
−ln( ) = 𝑘𝑡 (3.11) 

[𝑇𝐺,0] 

where TG,0 is the initial species concentration at time zero, and TG,t is the concentration 

of the species at time, t. The apparent rate constant, k, was obtained by the linear fit of 

Equation 3.6 and the plots are shown in Figure 3.30. 

a) b) 

Figure 3.30 Kinetics for transesterification of soybean oil 

with: a) 0% water, b) 10% water 

The rate constant, k, is equivalent to the slope. Converting to units of s-1, rate 

constants of 1.95 × 10-4 s-1 (±2.4 × 10-5) and 8.5 ×10-5 s-1 (±3.6 × 10-5) were obtained for 

the reactions with 0% and 10% water respectively. This shows the significant effect of 

water on the rate constant as it decreased by more than 50% when water was added to 

only 10% composition. 

Literature shows that a rate constant of 3 x 10-4 s-1 was obtained at 230 °C for the 

noncatalytic transesterification of soybean oil (Dasari et al. 2003).  Under different 

reaction conditions, Chantrasa et al. report a power law rate expression of -r = 3.43 × 10-
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5CTCP
0.54CMeOH

1.10 for the transesterification of tricaprylin (TCP) and methanol at 120 °C 

(Chantrasa et al. 2011). 

Liu et al. reported that methanol had to be contacted with the catalyst before 

reaction because the reverse of contacting the oil with the catalyst first would impair the 

catalyst activity due to strong adsorption of triglycerides on the active sites. This was 

observed when they recognized differences in catalytic activity after comparing a 

methanol-catalyst pre-contacting case with a triglyceride-catalyst pre-contacting case at 

120 °C. The methanol-catalyst pre-contacting case did not appear to have mass diffusion 

limitations, but the triglyceride-catalyst pre-contacting case did and was temperature 

dependent. 

This was indicated in the conversion results by a test of the catalyst surface area 

before and after reaction. They ascribe these results to the fact that the triglyceride 

compounds in lipid feedstocks are large bulky molecules with linear saturated and 

unsaturated chains and also point out that adsorption is an exothermic reaction and is less 

favored thermodynamically at higher temperatures.  (Liu et al. 2007). This phenomenon 

may have also affected the results. 

3.4 Conclusions 

In the methanol transesterification of soybean oil, porous metal oxides prepared 

from substituted and nonsubstituted hydrotalcites have high activity at 150°C. Using 8 

different porous metal oxides, the highest conversions were produced by Fe-20, 

unsubstituted, and Cu-10 PMOs. Unsubstituted PMOs can be used since it gives a 

conversion that is only 4% less than the highest, Fe-20 PMO catalyst, and its precursor is 

available commercially. The effect of various concentrations of water on the 
100 
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transesterification of soybean oil using these catalysts was evaluated to determine their 

activity and usability in the presence of water. The unsubstituted hydrotalcite has the best 

tolerance for water at 1% water content with a 26% decrease in conversion, while the Cu-

20 catalyst has the best tolerance for water at 20% water content. 

In terms of kinetics, the rate of the reaction of 1.95 × 10-4 s-1 was decreased by 

more than 50% when 10% water was added 

Generally, the results indicate that the porous metal oxides obtained from 

hydrotalcites can work well at high temperatures, but are significantly affected by water 

even at concentrations as low as 1% water during reaction. The most reactive catalyst 

(43% conversion) was Fe-20 PMO. Therefore, for best FAME yields, it is recommended 

to completely avoid the presence of water in the reaction as the rapid deactivation of 

these catalysts does not pose a benefit for the economics of the biodiesel production 

process from wet sludge which has significantly higher water content. 
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CHAPTER IV 

EFFECT OF WATER ON THE ESTERIFICATION OF PALMITIC ACID USING 

METHANOL OVER ZEOLITE CATALYSTS 

4.1 Introduction 

Biodiesel is usually obtained by transesterification of oils to get the fatty acid 

methyl esters (FAMEs). In the case of a feedstock with high fatty acid and/or water 

content, however, a second method of generating biodiesel from oil without 

transesterification is to convert the lipids to free fatty acids by hydrolysis followed by 

esterification to obtain the fatty acid methyl esters (biodiesel). 

Chapter 3 investigated the use of basic porous metal oxides to produce FAMEs 

from a wet feedstock. However, the PMOs were adversely affected by the presence of 

water that caused significant decrease in FAME yields. This chapter investigates the use 

of acidic zeolites to determine if these catalysts are more tolerant of high water content in 

the feedstock. 

While transesterification is a 3 – step reaction of triglyceride with methanol to 

produce FAMEs and glycerol, esterification is a 1-step reaction of fatty acids with 

methanol to produce FAMEs and water as a by-product. Hydrolysis of oils and fats is a 

reversible reaction where water molecules split a triglyceride molecule to form fatty acids 

and glycerol. It is a 3-step mechanism where one molecule of triglyceride is hydrolyzed 

to 1 molecule of diglyceride and 1 mole of fatty acid (FA), in a continuous process until 
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one molecule of monoglyceride is hydrolyzed to 1 molecule of glycerol and FA giving a 

total of 3 fatty acids.  The transesterification, hydrolysis and esterification reactions are 

shown in Figures 4.1 - 4.3. 

Figure 4.1 Transesterification reaction. 

Figure 4.2 Hydrolysis of triglyceride. 

Figure 4.3 Esterification reaction. 

107 



www.manaraa.com

 

 

   

  

 

  

 

 

 

   

 

  

  

 

 

  

The benefits of using hydrolysis before esterification may be useful especially 

where there is a high water content initially in the feedstock. This water can be used for 

the hydrolysis. 

4.1.1 Esterification Reaction 

Direct esterification can be catalyzed or proceed in a spontaneous fashion 

depending on the miscibility of the reactants, the temperature and acidity of the 

carboxylic acid (Hoydonckx et al. 2004). The reactivity of alcohols and carboxylic acids 

toward esterification strongly depends on the steric hindrance of both the alcohol and 

carboxylic acid (Hoydonckx et al. 2004). As expected the larger the molecules are (e.g. 

tertiary alcohol and acid), the slower the reaction rates. While Lee and Saka point out that 

bronsted acid sites are more effective for FFA conversion (Lee&Saka 2010), Hoydonckx 

et al. report that the acid strength of the carboxylic acid has a minor effect on 

esterification reaction rate (Hoydonckx et al. 2004). In the esterification reaction, there is 

a lower mass transfer limitation since free fatty acids (FFA) are polar components and are 

miscible with methanol (Lee&Saka 2010). This makes the esterification of fatty acids 

faster than transesterification of triglycerides in addition to the fact that it is a one step 

reaction, while transesterification consists of three stepwise reactions (Aranda et al. 

2008). 

For the esterification reaction, an acidic catalyst is needed to reduce the reaction 

time, and this could be homogeneous or heterogeneous. Some of the most commonly 

used catalysts in industry for esterification include: sulfuric acid and phosphoric acid 

(Hoydonckx et al. 2004, Aranda et al. 2008). Aranda et al. were able to achieve over 90% 
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conversion in 1 hour of reaction when 0.1% (w/w) sulfuric acid was used to catalyze the 

esterification of a fatty acid mix with anhydrous methanol at 130 °C (Aranda et al. 2008). 

The use of heterogeneous catalysts has advantages over homogeneous catalysts 

that include: 1) ease of separation from products, 2) removes the corrosive environment, 

and 3) increases the purity of the products since side reactions are either eliminated or 

less significant (Xin et al. 2008). Di Serio et al. state that the reaction mechanism in 

esterification reactions promoted by solid acid Bronsted catalysts is similar to the 

homogeneous one (Di Serio et al. 2007) 

With esterification particularly, the choice of catalysts is important because a 

basic catalyst might give challenges with soap formation upon reacting with the acid. 

Thus, an acid catalyst is needed. 

One phenomenon to pay attention to in esterification is the reverse reaction (also 

called hydrolysis of esters) because excess water could push the reaction equilibrium 

backwards and reduce yield of FAMEs. Typically an excess of one of the reagents is used 

to shift the equilibrium, or water is continuously removed during the reaction by using 

codistillation or adsorption on drying agents (United States Environmental Protection 

Agency: Office of Wastewater Management June 2011). 

4.1.2 Zeolites 

In the search for a suitable catalyst for this process, it was determined that a 

heterogeneous, acidic catalyst that was tolerant to water was needed. Zeolites were 

chosen for this study because of the tunability of their acidicity and hydrophobicity. 

Zeolites are microporous crystalline solids with well-defined, shape-selective 

structures usually containing silicon, aluminum, and oxygen in their framework (Chung 
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et al. 2008). They are also known as molecular sieves and commonly used in 

applications such as ion-exchange, separations and catalysis (Larsen 2007). Zeolites are 

widely used in the petrochemical industry, especially in fluid catalytic cracking and 

hydrocracking, because of their numerous pores, active sites, thermal stability and shape 

selectivity (Askari et al. 2013). 

A common characteristic used to distinguish zeolites is their silica-to-alumina 

(SiO2/Al2O3) ratio, which gives an indication of the acidity (number of total acid sites) 

and hydrophobicity of the catalyst. The acidity (concentration of Bronsted acid sites) 

decreases with decreasing Al content so a catalyst with larger silica:alumina ratio has 

lower acidity (Chung et al. 2008, Shirazi et al. 2008, Lestari et al. 2009). Bronsted acid 

sites are more effective for the conversion of FFA and so the number of Bronsted acid 

sites is an important criterion for selecting a catalyst for esterification (Lee and Saka 

2010). 

As the acidity decreases with increasing Si/Al ratio, the hydrophobicity increases 

(Shirazi et al. 2008). Lower aluminum in the zeolite framework leads to a more 

hydrophobic catalyst because it decreases the hydrophilicity of the internal voids, thus 

increasing their adsorption capacity towards hydrophobic compounds (Navalon et al. 

2009). Since the Si4+ and Al3+ ions in the zeolite framework are of similar ionic radius, 

the Al3+ ion can replace silicon in the zeolite lattice. When that happens, a negative 

charge is induced in the framework that requires a charge-balancing cation in the 

micropores. Consequently, the presence of the framework aluminum produces an 

increased affinity of the zeolite pores for water (Navalon et al. 2009). Thus, the catalyst 

with the higher silica/alumina ratio is more hydrophobic. 
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Figure 4.4 Structures of a) H-Y zeolite, and b) ZSM-5 zeolite 

(Larsen 2007) 

 

 

 

There are various kinds of zeolites which include: ZSM-5 and Y zeolites, also 

known as Faujasite. Y zeolites are the most widely used in refineries especially in the 

area of fluid catalytic cracking because of its large pore openings and high surface area 

(Lestari et al. 2009).  Pore size is reported to be 5.6 Å for ZSM-5 and 7.4 Å for zeolite Y 

(Jungsuttiwong et al. 2005). Structures are shown in Figure 4.4 below. 

An interesting phenomenon with ZSM-5 zeolites that will be examined is the 

knowledge that water molecules in ZSM-5 are driven out of the crystallites by polar 

organic molecules which substantiates the hydrophobicity of these catalysts (Ison and 

Gorte 1984, Kasai and Jones 1984). This phenomenon is significant and allows us to pose 

a hypothesis that the esterification reactions with water could proceed normally unless the 

temporary presence of water has hindered the activity of the catalyst. This could make the 

ZSM-5 catalyzed reactions have higher activity/conversion of fatty acids if methanol 

displaces any adsorbed water during reaction. 

111 



www.manaraa.com

 

 

 

   

 

  

 
 
 

  
 

 
 

 
 

  
 

 
 

     

 
 

     

           

 

 

  

 

  

   

 

 

 

 

The 5 zeolites used in this project are available commercially and were supplied 

by Zeolyst International. Their properties are given in Table 7.1. They are of the 2 basic 

types: H-Y and ZSM-5 zeolites. 

Table 4.1 Properties of the 5 Zeolites proposed for use in this study 

Property 
ZSM-5 (30) 

(CBV 3024E) 
ZSM-5 (50) (CBV 

5524G) 
ZSM-5 (80) 
(CBV 8014) 

H-Y (30) 
(CBV 720) 

H-Y (80) (CBV 
780) 

SiO2/Al2O3 

Mole Ratio 
30 50 80 30 80 

Nominal Cation 
Form 

Ammonium Ammonium Ammonium Hydrogen Hydrogen 

Surface Area 400 m2/g 425 m2/g 400 m2/g 780 m2/g 780 m2/g 

Source: (Zeolyst International) 

The nominal cation form refers to the chemical state of the catalyst when 

supplied. A zeolite in ammonium form is inactive and needs to be calcined at 550°C (Jun 

et al. 2003) to convert it to the active hydrogen form (i.e. H-ZSM-5) before use. 

Conversely, the zeolite with hydrogen cation is already active and does not require 

calcination. The acidic sites responsible for the reaction are mainly inside the pores of the 

zeolites. This site (of the H+) is characterized as a Brønsted acid site, and is responsible 

for the major catalytic activity of ZSM-5. Brønsted acids are proton donors, while Lewis 

acids are electron acceptors. Once the zeolite has been calcined, the name H-ZSM-5 is 

used hereafter to denote that it is in the acidic form. The value of x in H-Y (x) or H-ZSM-

5 (x) henceforth denotes the SiO2/Al2O3 ratio. The H-ZSM-5 Catalysts studied were: H-

ZSM-5 (30, 50, 80) while H-Y catalysts studied were: H-Y (30, 80). 
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4.1.3 Literature review on esterification catalysis 

Catalysts such as Amberlyst-15 and sulfuric acid were investigated in the 

esterification of oleic acid with methanol for the effect of water. Park et al. varied the 

water content using 0, 1, 2, 5, 10 and 20% of oil at temperature conditions of 60 °C and 

80 °C with oil to methanol ratios of 1:3 and 1:6 (Park et al. 2010a). They found that 

FAME content gradually decreased as initial water content increased (even as low as 1%) 

and the catalysts were not very tolerant of water, especially the Amberlyst 15 due to 

water poisoning the acidic sites and the reverse of the esterification reaction occuring 

(Park et al. 2010a). 

Zeolites have also been used in esterification reactions (Kirumakki et al. 2004, 

Kirumakki et al. 2006). In terms of kinetic mechanisms, the Langmuir-Hinshelwood (LH) 

and the Eley-Rideal (ER) models are often used to correlate kinetic data for solid-

catalyzed esterification reactions (Kirumakki et al. 2004) (Kirumakki et al. 2006, Bedard 

et al. 2012). These two models are derived based on the assumption that the rate-

determining step is the surface reaction on the catalyst between two adsorbed molecules 

(LH) or between a molecule in the bulk solution and an adsorbed molecule (ER). 

There are mixed reviews in the literature on whether the mechanism for the 

esterification of acids follows the Eley-Rideal or the Langmuir-Hinshelwood mechanism. 

Altiokka and Citak studied the esterification of acetic acid and isobutanol catalyzed by 

cation-exchange resin (Amberlte IR-120) between 318 K and 368 K and proposed that 

the mechanism occurred via a single-site Eley-Rideal (ER) pathway in which an adsorbed 

alcohol molecule reacts with an acid molecule in the bulk phase (Altiokka and Çitak 

2003). Chu et al. researched the gas-phase esterification of acetic acid with ethanol and 
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butanol over carbon-supported heteropolyacids and reported a Langmuir-Hinshelwood 

mechanism for the esterification with ethanol, but an Eley-Rideal mechanism for 

esterification with butanol (Chu et al. 1996).  They ascribed the change in mechanisms to 

the different alcohols, stating that the steric hindrance of butanol could be the cause. 

Both mechanisms have also been proposed for esterification on zeolites 

specifically as well. Kirumakki et al. investigated esterification of acetic acid with C3 and 

C4 alcohols on H, HY, and HZSM-5 zeolites in the temperature range of 383 – 403 K 

and observed a decrease in initial rate with an increase in alcohol concentration which 

suggested that the alcohol blocks the adsorption of the acetic acid was needed for 

esterification to proceed (Kirumakki et al. 2006).  These observations led to the 

conclusion that the esters are formed via an ER mechanism where an adsorbed acid 

molecule reacts with alcohol in the bulk phase. 

The mechanism of the process is strongly dependent on the catalysts and 

reactants, and may vary depending on gas- or liquid-phase operations (Kirumakki et al. 

2006). This study will evaluate the mechanism occurring during the esterification 

reaction on ZSM-5 zeolites and the effect of water. 

The purpose of this project is to examine the feasibility of using sludge with high 

water content to produce biodiesel by investigating the effects of water on biodiesel yield 

and on the catalysts used in the esterification reaction. This is because the resistance of 

the solid acid catalysts to water poisoning is an important characteristic in determining 

their use for commercial esterification processes (Liu et al. 2006a). The effect of different 

water concentrations on esterification reactions and the mechanism behind it is an area 

that has been given minimal attention in the literature. The effect of water on 
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esterification with respect to parameters like the reaction rate, reaction order, rate 

constants, activation energy, substrate conversion, and FAME yield were determined. 

Obtaining kinetic data and determining the reaction rate is essential for reactor design and 

scale-up feasibility studies. 

4.2 Experimental Materials and Methods 

4.2.1 Chemicals and Gases 

All chemicals (palmitic acid (98%), methyl palmitate (95%), methanol (99.9%), 

sodium sulfate (99%), sodium chloride (99.9%), chloroform (99.8%), 1,3-

dichlorobenzene (1,3-DCB) >99%, and butylated hydroxytoluene (BHT)) were purchased 

from Fischer Scientific (Pittsburgh, USA). Octadecane (C18) at 99% purity was obtained 

from Fisher Scientific (Pittsburgh, PA, USA) and used as an internal standard when 

FAMEs and fatty acids were and analyzed. The gases used (He, H2, and N2) were of high 

purity grade and were obtained from NexAir (Columbus, MS, USA). All chemicals, 

standards, and gases were used as received without further purification.  

4.2.2 Apparatus 

The experimental runs were performed in 60 mL borosilicate vials (I-Chem) 

placed in a heated aluminum block that was part of an Instatherm® block system (Ace 

Glass Inc., Vineland, NJ, USA) complete with a temperature controller that controls 

within ± 2°C. A stirring plate was used in conjunction with magnetic stir bars in the vial 

to provide agitation during the reaction. 
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4.2.3 Procedures 

4.2.3.1 Catalyst Preparation 

The ZSM-5 catalysts were converted from the initial ammonium (NH4
+) form to 

the active hydrogen (H-ZSM-5) form, releasing ammnonia (NH3) by calcination at 550°C 

for 2.5 hours before use (Zeolyst). This site (of the H+) is characterized as a Brønsted acid 

site, and is responsible for the major catalytic activity of ZSM-5. The H-Y zeolites were 

provided in the hydrogen form and did not need calcination but were heated at 250°C for 

1 hour to drive off any moisture present before use. Both catalysts were stored in a 

desiccator until use. 

4.2.3.2 Sample Preparation and Reaction Procedure for Esterification of Palmitic 
Acid 

The kinetics of palmitic acid esterification was studied using 60 mL vials heated 

by the Instatherm® block system. The temperature controller was calibrated to produce a 

system temperature of 65 °C ± 1.5 °C in the vials. Batch runs were conducted at the same 

temperature for different sampling times. Eight 60ml vials were used for each reaction set 

with each vial used to represent the samples taken at each time interval for one reaction. 

One vial was used for monitoring internal temperature, where a thermometer was inserted 

through the vial’s silicone/Teflon septum into the liquid in the vial to validate internal 

temperature. The remaining seven vials were labeled as: ‘0 min’ (removed right before 

catalyst addition), ‘15 min’, ‘30 min’, ‘1 hr’, ‘2 hr’, ‘3 hr’ (included catalyst and removed 

at the respective time points) and ‘Control’ (without catalyst and removed at 3 hour time 

point) samples. 
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With this method for kinetics, there was a concern for methanol loss while 

opening the vial to add catalyst. This concern was addressed by weighing a known 

amount of methanol in the vial before heating to temperature (since methanol boils at 65 

°C), and re-weighing it after opening the vial for 1 minute (assumed maximum time to 

add catalyst). It was determined that the difference in mass or methanol loss is 

insignificant. 

At the start of the reaction, 0.5 g of palmitic acid was added to the 60 mL glass 

vials with 10 mL of solvent (either methanol only or a mixture of methanol and water) 

and a magnetic stirring bar (15 mm width × 10 mm length). Stirring rate was set to the 

respective speed. The vials were sealed and then placed in the already-heated Instatherm 

block and allowed to equilibrate to temperature set-point for an hour before adding the 

catalyst and starting the timer (Figure 4.5). When the vial contents have stabilized at the 

desired set point (by internal thermometer), (after about an hour), the 0 min sample was 

taken out and dropped into an ice bath to stop the reaction. (Initial GC analyses of the 0 

min sample were conducted to confirm that there wasn’t significant conversion in the 

first 1 hour of preheating. Literature also shows that the extent of reaction without 

catalyst is negligible compared to when it reacts with catalyst (Liu et al. 2006b).). Then 

0.05 g of the appropriate calcined catalyst was quickly added to the respective labeled 

vials and sealed. The reaction timing was started using a countdown timer once the 

catalyst was placed in the vial. Samples were taken out at the designated time intervals of 

0, 15, 30, 60, 120, and 180 minutes and placed in an ice bath to quench the reaction. 
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Figure 4.5 Reaction set-up for the esterification of palmitic acid with zeolite as 
catalyst 

4.2.3.3 Extraction procedure - modified Bligh & Dyer method 

The yield of FAME and conversion of fatty acid was determined after performing 

a chloroform extraction process using a modified form of the Bligh and Dyer method 

(Bligh and Dyer 1959) on each vial, and analyzing the resulting solutions by gas 

chromatography. This method uses a pre-determined mixture proportion of chloroform, 

water, and methanol to extract lipids into one phase (the chloroform phase) for easier 

identification. 

The reaction products from each sample were extracted by first making up the 

vial contents to a mixture of 20 ml chloroform, 10 ml methanol, and 50 ml water (mass 

percentage ratio of chloroform:methanol:water being 34% : 9% : 57%),  and combining 

in a 125ml separating funnel (Figure 4.6). After shaking vigorously and leaving to settle, 

the mixture separated into 2 phases with chloroform on the bottom and an aqueous layer 

containing methanol and water on top. The chloroform layer was withdrawn in a beaker 

containing a magnetic stirrer and sodium sulphate to dry any possible water molecules. 

The extraction was done twice (after confirming that a 3rd extraction was not needed) and 
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the chloroform layers pooled, followed by vacuum filtration to remove the sodium 

sulphate. The extracted chloroform layer was diluted down to a maximum concentration 

of 400 μg/ml and subsequently analyzed by gas chromatography. 

This ratio was selected when it yielded the best phase separation after testing a 

number of different ratios from the biphasic region of the chloroform-methanol-water 

phase diagram. 

Prior to this, the method of using a rotary evaporator to remove the methanol 

content from the reaction products followed by dissolution in chloroform was tested. 

However there were challenges with getting the water content out especially at higher 

initial water concentrations, and concerns that the heating during evaporation could drive 

the reaction forward if there was any catalyst in mixture and thus invalidating the 

accuracy of the results. 

Figure 4.6 Sample extraction in a separating funnel 
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4.2.4 Analytical Method 

4.2.4.1 Gas chromatography (GC) analysis 

The fatty acid and FAME in the chloroform phase were analyzed using the 

Agilent GC 6890N gas chromatograph equipped with a flame ionization detector (GC-

FID) (Agilent, Santa Clara, CA, USA). Octadecane, C18, was added to the chloroform 

diluent as an internal standard.  The column used was a Restek Stabilwax-DA capillary 

column (Restek, Bellefonte,PA, USA) having dimensions of 30m x 0.25mm ID and 0.25 

μm film thickness. Analyses were conducted using helium as a carrier gas with a constant 

injector temperature of 260 °C in splitless mode. Sample injection volume was 1 μL. The 

FID temperature was held at 260 °C for the duration of the analysis. The GC oven 

(Figure 4.7) was programmed at an initial temperature of 50 °C, held for 2 min, ramped 

up to 250 °C at 10 °C min-1, and held for 18 min, giving a total of 40 min analysis time. 

The yield of methyl palmitate and conversion of palmitic acid were calculated using these 

results. 

Figure 4.7 HP 6980 series GC system with DA Stabilwax column for quantifying 
FAMEs and FFA Initial and final temperatures of 50 °C and 250 °C 
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4.2.4.2 Standard preparation and dilution 

Palmitic acid and methyl palmitate purchased from Fisher Scientific (Pittsburgh, 

PA, USA) were used to prepare 5-level calibration standards in Chloroform with C18 as 

internal standard. All calibrations were corrected for purity. Calibrations based on 

maximum and zero conversion will be completed for palmitic and oleic acids and their 

esters at concentrations of 500, 250, 125, 62.5, 31.25, 15.625μg/ml. 

Conversion of palmitic acid was calculated using the Equation 4.1 below: 

𝐶𝑃𝐴0−𝐶𝑃𝐴 𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑜𝑓 𝑃𝐴 = ( ) × 100 (4.1) 
𝐶𝑃𝐴0 

FAME yield was calculated using the Equation 4.2: 

𝑀𝑎𝑠𝑠 𝑜𝑓 𝐹𝐴𝑀𝐸 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 
𝐹𝐴𝑀𝐸 𝑦𝑖𝑒𝑙𝑑 (%) = ( ) × 100 (4.2) 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑃𝐴 𝑟𝑒𝑎𝑐𝑡𝑒𝑑 

4.2.5 Experimental Design 

Experiments were designed by varying temperature, mixing speed, zeolite catalyst 

type, initial water content and reaction duration to obtain various kinetic parameters. 

Three total temperatures of 55, 65 and 85°C were studied; additional water 

concentrations of 10, 20, 50, 70, and 90% were also investigated. The investigative 

procedure in this study include: 1) screen 5 purchased zeolite catalysts for most active, 2) 

check for mass transfer limitations, 3) evaluate effect of water on the best catalyst using 4 

water compositions:  0%, 10%, 20%, 50%, 70%, and 90% and determine maximum 

concentration of water that catalyst will tolerate while producing relatively high FAME 

yield, and the influence of the silica:alumina (SiO2/Al2O3) ratio, 4) determine activation 

energy and other kinetic parameters like rate constants, 5) determine heterogeneous 
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catalytic rate laws and constants, and 6) propose reaction mechanisms with and without 

addition of water. 

Triplicate runs were conducted for each reaction condition except where noted. 

4.2.5.1 Catalyst Screening 

For catalyst screening, the five zeolite catalysts discussed in the introduction were 

studied at the same reaction condition of 0% water, 0.5 g palmitic acid (PA), 10 mL 

methanol and 0.05 g catalyst at 65°C and 700 rpm to determine the zeolite catalyst(s) 

with highest activity. Palmitic acid was used as a surrogate because it is one of the 

predominant fatty acids in sludge. Composition is 56% in sewage lipids(Angerbauer et al. 

2008). Catalysts were screened and the catalyst with the highest conversion was selected 

after normalizing with differing surface area values. 

4.2.5.2 Investigation of External Diffusion significance 

Although esterification has a lower mass transfer limitation than 

transesterification due to the fact that fatty acids are polar and more miscible with 

methanol, the reaction still needs to be investigated for the presence of any of those 

effects. External diffusion limitation has been shown to be directly related to stirring 

speed (Müller 2001). To ensure that the reactions were kinetically-limited and not mass 

transfer limited, the esterification reaction was conducted on the 80:1 ZSM-5 catalyst at 3 

different stirring speeds: 600, 700, and 900 rpm, and the same reaction conditions of 

65°C. 
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4.2.5.3 Effect of water on yields and kinetics 

The esterification reaction of palmitic acid with methanol was studied at different 

levels of initial water content varying from 0%, 10%, 20%, 50%, 70% and 90% water at 

the same reaction conditions of 65°C and 700 rpm for 3 hours. Additional reactions were 

also conducted at 55 °C and 85 °C using 0% and 50% water added initially. 

For reactions investigating the effect of water, the appropriate combination of 

water and methanol was used according to Table 4.2 below to keep the total volume 

constant at 10 ml. All vials in a reaction set heated at the same time had the same starting 

water concentration. The reaction mixture was continuously stirred during the reaction 

using magnetic stirrers. 

Table 4.2 Composition and volumes of water and methanol for the esterification of 
palmitic acid over zeolite 

Water 
composition, 

% volume 

Water volume 
(ml) 

Methanol volume 
(ml) 

Total 
volume 

(ml) 
0 0 10 10 

10 1 9 10 

20 2 8 10 

50 5 5 10 

70 7 3 10 
90 9 1 10 

Based on the yield and conversion results, a reaction mechanism was proposed. 

The phenomenon of methanol driving water out of the catalyst pores will be examined at 

this point and it will be determined if water affects ester production negatively at all 
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concentrations or if it improves ester yield at some concentrations, the maximum 

concentration would be beneficial in the production of biodiesel from sludge. 

4.2.5.4 Influence of reaction time 

The esterification reaction was conducted in the temperature range of 55 – 85°C 

while keeping the PA, methanol and catalyst concentrations constant. Timed samples 

taken at 0 min, 15 min, 30 min, 1 hr, 2 hr, and 3 hr were evaluated based on FAME 

yields. Also, added 5 hr and 7 hr reaction times to two reaction conditions to evaluate the 

effect. 

4.2.5.5 Influence of reaction temperature 

The esterification reaction was studied kinetically using the best catalyst, H-ZSM-

5 (80), in the temperature range of 55 – 85°C while keeping the PA, methanol and 

catalyst amounts constant at 0.5g PA, 10ml methanol, and 0.05g catalyst for the 0% water 

composition and 0.5g PA, 5 ml methanol, 5 ml water, and 0.05g catalyst for the 50% 

water composition. The temperature dependency of the rate constants obtained from the 

data at 55 °C, 65°C, and 85 °C was used to determine the activation energy for this 

reaction using the Arrhenius equation at both conditions. 

4.2.5.6 Effect of initial amount of fatty acids 

Since all reactions had been conducted using 0.5g of palmitic acid, a set of 

duplicate reactions using 0.25g palmitic acid, 10 ml methanol, 0.05g catalyst, 700 RPM 

at 65°C and 0% water was conducted to determine the effect of changing concentrations 

on yields. 
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4.2.6 Kinetics and mechanism determination 

The Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms as well as 

some modified forms were considered as heterogeneous models that could predict the 

rate law of the reactions. The kinetic rate law with the best fit was chosen and optimum 

kinetic parameters can be used for process design. 

Fatty acid concentrations were determined from samples taken at different 

reaction times via GC analysis and used to calculate the reaction rate. Experimental data 

was tested using the method of iterative non-linear regression in Microsoft® Excel to fit 

the experimental data to the proposed model function. The aim of this data fitting 

procedure was to minimize the mean square differences between the experimental values 

of the rate (rexp) and the calculated values of the rate (rcalc), as seen in Equation 4.3. The 

Microsoft® Excel ‘Solver’ tool was used. 

Minimize 𝑦 = ∑(𝑟𝑐𝑎𝑙𝑐 − 𝑟𝑒𝑥𝑝)2 (4.3) 

The experimental rate was obtained using Equation 4.4: 

𝑑𝐶𝑎 𝑟𝑒𝑥𝑝 = (4.4) 
𝑑𝑡 

where Ca = concentration of acid at a given time, t. A plot of Ca vs. t was created for each 

data set and a second-order trend line was fitted to the data. The derivative of the 

quadratic equation of the trend line was used to determine the experimental rate (𝑑𝐶𝑎).
𝑑𝑡 
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4.3 Results and Discussion 

4.3.1 Catalyst Screening 

Screening tests based on the highest FAME yields were conducted using the 5 

catalysts in Table 1 to pick the best catalyst. The results are presented in Figure 4.8. 

Figure 4.8 Catalyst screening results on esterification of palmitic acid with methanol 

effect of catalyst type – Methanol:Palmitic Acid = 127:1 (molar ratio), 0.05 g catalyst (H-
ZSM-5 (80)), reaction temperature 65°C, 0% water, reaction time 0 - 3 h. 

The results show that the best catalyst for the esterification reaction from the 

screening is the H-ZSM-5 (80) and it was significantly different in FAME yields from the 

other catalysts tested. The yields were normalized for the different catalyst surface areas. 

The yield of FAMEs decreased in the order: 

H-ZSM-5 (80)  H-ZSM-5 (50)  H-ZSM-5 (30)  H-Y (80)  H-Y (30) 

Since the activity of zeolites is directly related to the concentration of the acid 

sites (Zheng 2002), the initial hypothesis was that the H-ZSM-5 catalyst with the lowest 

silica/alumina ratio, H-ZSM-5 (30), could produce the highest conversion since it has the 
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highest acidity. Nonetheless, there is the factor of the degree of hydrophobicity of the 

catalyst to consider. Literature shows that lower aluminum in the zeolite framework leads 

to a more hydrophobic catalyst.  From these results it appears that the effect of higher 

acidity, based on lower SiO2:Al2O3 ratio, was not significant in producing higher FAMEs 

yields. Rather, the results imply that the differences in conversion can be attributed more 

significantly to the hydrophobicity of the catalysts. From studying the H-ZSM-5 

catalysts, it is seen that the FAMEs yields increased significantly as the SiO2/Al2O3 

increased from 30 to 80, which is the same trend of increasing hydrophobicity. The need 

for the hydrophobicity comes into play as water is produced from the forward reaction 

and could compete with the palmitic acid and methanol for the active catalyst sites. 

Although the catalysts with lower silica:alumina ratios are higher in acidity (number of 

acid sites), the effect of hydrophobicity seems to dominate as the catalysts with 80:1 

silica:alumina ratios produced more FAMEs. This is presumed to be due to their higher 

water resistance (or preference for organic compounds) due to strong hydrophobic 

properties resulting from the high SiO2/Al2O3 ratio. This is also corroborated by work 

done by Jun et al. who conducted a study in search of a zeolite with high water tolerance 

that could be used in the production of dimethyl ether by a methanol dehydration process 

which inherently produces a lot of water (Jun et al. 2003). They found that of all the 

zeolites tested, H-ZSM-5 zeolites had high water-resistance in methanol. The catalysts 

they tested included H-Y (12, 60) and H-ZSM-5 (30, 50, 80). 

Between the 2 types of zeolites, H-ZSM-5 and H-Y, the H-Y zeolites have 

significantly lower FAMEs yields at both the 30:1 and 80:1 ratios. This is important 

because the H-Y zeolites are reported to have almost twice the surface area of the H-
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ZSM-5 catalysts and the pore size of the H-Y zeolite is larger than the H-ZSM-5 zeolite. 

Referring to the work of Ison & Gorte, it is possible that the displacement of water 

molecules from the acid sites by methanol on the H-ZSM-5 catalysts is what makes the 

H-ZSM-5 zeolites more active than their H-Y counterparts in the esterification reactions 

(Ison and Gorte 1984). 

A control test was run to evaluate the yield in the absence of catalyst and it was 

found to produce only 1% FAMEs after reacting for the same time of 3 hours at 65°C. 

To ensure that the palmitic acid molecules could get access to the catalytic active 

sites, calculations were made on Spartan® (a molecular modeling software) to determine 

palmitic acid dimensions. Palmitic acid width was estimated at 3.05 Å and its length at 

21.68 Å, which indicates that the palmitic acid molecule can enter both catalyst pores if 

going in end-first. Pore size is reported to be 5.6 Å for ZSM-5 and 7.4 Å for zeolite Y 

(Jungsuttiwong et al. 2005). 

4.3.2 Investigation of External Diffusion significance 

The reactions at the different speeds produced FAMEs yields and rate constants 

that were not significantly different, thus indicating that the reaction was kinetically-

limited. The first order rate constants were calculated and compared. Figure 4.9 shows 

the rate constants were not significantly different and Figure 4.10 below shows the yield 

of FAMEs over time for each speed at the same reaction conditions mostly overlapping.  

At these three different mixing rates, there appears to be no mass transfer limitations 

since there are only slight variations between the rate constants. Thus, limitation due to 

external diffusion or mass transfer can be neglected. 
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Figure 4.9 Rate constants as a function of mixing speed for the esterification of 
palmitic acid using H-ZSM-5 (80) 

65°C, Methanol:Palmitic acid =127:1 (molar ratio), 0% water. 

Figure 4.10 FAMEs yield at different mixing speeds for the esterification of palmitic 
acid using H-ZSM-5 (80) 

65°C, Methanol:Palmitic acid =127:1 (molar ratio), 0% water. 
* Lines are not from a model and were only added to show the trend 
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4.3.3 Effect of water on yields and conversions 

The esterification reaction was studied at different levels of initial water content 

varying from 0 – 90% water at the same reaction conditions of 65°C, 700 rpm for 3 

hours. Figure 4.11 below shows the comparison of FAME yields at each water level and 

varying times. 

Figure 4.11 Effect of water on esterification of Palmitic acid over H-ZSM-5 (80) for 3-
hour reaction time at 65°C and 700 rpm. 

* Lines are not from a model and were only added to show the trend 

In Figure 4.11, we see that addition of water affected the reaction negatively 

(compared to 0% water added) at all water levels except the 50% water content reaction. 

While the 0% water reaction showed the highest initial activity in the first hour of 

reaction, the presence of water in all other reactions reduced the FAME yields 
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significantly from the beginning of the reaction. The effect of 10%, 20% and 50% water 

were not significantly different in FAME yields during the first 30 minutes. However, 

with longer reaction time, the 50% water reaction increases in activity and achieves the 

same FAMEs yield as the 0% water reaction after 2 hours. Testing other water levels 

higher than 50% had a drastically negative impact on FAMEs yield, indicating that 50% 

water is the optimum water content for these reactions. Overall, the FAME yield 

decreases with increasing water concentration. 

Since this was an unexpected occurrence, further experiments were conducted for 

the 0% and 50% water content reactions for reaction times of 5 and 7 hr to examine if the 

trend would continue after a longer duration. The result is shown in Figure 4.12, where it 

is seen that the yield from the 50% water reaction does overtake that in the absence of 

water as reaction times increased. This is explained with the mechanism in Section 4.3.8. 

Figure 4.12 Effect of water on esterification of Palmitic acid over H-ZSM-5 (80) for 5-
and 7-hour reaction times at 65°C and 700 rpm. 

* Lines are not from a model and were only added to show the trend 
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Interestingly, in a sensitivity analysis conducted by Revellame et al. (Revellame 

et al. 2011) to determine how the break-even biodiesel price changes with moisture 

content of the feedstock for producing biodiesel from wet activated sludge, they found 

that 50% moisture content was the optimum for producing the lowest break-even 

biodiesel price. 

Possible reasons why water helps at 50%: 

1. Regenerates the catalyst: It could be that there is an intermediate formed 

that blocks the catalyst’s active site and thus inhibits formation of the 

ester. Then possibly the presence of water at 50% helps remove that 

intermediate and frees up the acid site for methanol to react with palmitic 

acid (since methanol also displaces the water according to Ison and Gorte 

(Ison and Gorte 1984)). This may not have happened for water levels less 

than 50% because the water content helped form the intermediate but was 

not enough to remove the intermediate from the acid sites. And at water 

concentrations higher than 50%, the water was present in such a high 

amount that the methanol could not displace all of it from blocking the 

catalytic active sites and the reverse reaction had to take place. In the 

study by Jun et al. to identify a zeolite with high water-tolerance for use in 

the methanol dehydration process, they found that coke formation (from 

polymerization of olefins on strong acid sites) blocked the supercage of 

the large-pore H-Y zeolite catalysts, unlike the medium-pore ZSM-5 

catalysts which formed coke deposits much slower under comparable 

conditions and has no supercage (Jun et al. 2003). In studying the effect of 
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water when added during the reaction, they found that all H-ZSM-5 

catalysts tested were regenerated by adding water. This was attributed to 

the fact that water can remove the carbon deposited on the pore of the H-

ZSM-5 catalysts but not in the H-Y catalyst because they have a supercage 

that gets blocked by the carbon deposit and thus prevents water from 

entering to remove deposits. They also had activation energy increase with 

the addition of water, possibly due to the blocking of the active sites by 

water (Jun et al. 2003), and thus, a similar occurrence could be taking 

place here. 

2. At 50% water content, the effect of the reverse of esterification reaction is 

not as pronounced because there is roughly equal amount of reactant 

(methanol) and product (water) on both sides of the reaction, so the 

reaction proceeds as in the absence of water after about 2 hours have 

elapsed. 

The initial hypothesis that the reaction could proceed normally because water was 

displaced by methanol was false. It is possible that the temporary presence of water has 

hindered the activity of the catalyst at certain water concentrations. 

Hoydonckx et al. report that zeolites are active catalysts for esterification but they 

catalyze the reaction slowly due to steric hindrance of the bulk fatty acids, or due to poor 

adsorption inside the zeolite pores (Hoydonckx et al. 2004). 

4.3.4 Influence of reaction time 

The esterification reaction was carried out in the temperature range of 55 – 85°C 

while keeping the PA, methanol and catalyst concentrations constant. Equilibrium was 
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not reached at the maximum reaction time studied (3 hours) because conversion was still 

increasing and had not leveled off. Additional reactions to obtain samples at 5 and 7 

hours reaction times at 0 and 50% water content reactions were conducted to determine if 

the trend of the FAME yield in the 50% water reaction increased past that of the 0% 

water reaction continued on the 8014 catalyst. For reactions without water added initially, 

it was observed that the conversion of palmitic acid increased from about 12% in the first 

30 minutes to around 35 % in 3 hours. When the reaction time was extended to 7 hours, 

the FAME yield got as high as 49 %, but still was not near completion, which indicates 

how slow this acid-catalyzed reaction is. For the 50% water reaction, the palmitic acid 

conversion was only about 8% at the 30 min point, increased to 35 % also by the 3 hr 

time point and ended up with a slightly higher conversion of 55 % after 7 hours of 

reaction time.  The data indicate that the reaction with 50% water content continues to 

produce higher conversion than the 0% water reaction after 3 hours almost like the water 

at that content starts to serve as an acidic catalyst. 

We also observed that for longer reaction times, the presence of additional water 

favored the production of FAMEs. For example, the 10% and 20% water reactions started 

off with the same FAMEs yield in the first 1hr and after that, the 20% water reaction had 

higher yield of FAMEs than the 10% water reaction. This was contrary to our initial 

hypothesis that adding water as a reactant would promote the backward reaction of ester 

hydrolysis (instead of the forward reaction of esterification) and thus reduces the ester 

yield. However, that observation was not noticed until after using greater than 50% water 

content initially. As seen in Figure 4.11, the 70% and 90% water content reactions 

dropped off in FAMEs yield significantly.  

134 



www.manaraa.com

 

 

  

 

  

 

 

  

  

   

   

  

 

4.3.5 Influence of reaction temperature 

Activation energy was calculated on the reaction with best catalyst at 0% water 

and best water composition of 50% water. 

The esterification reaction was studied using the best catalyst, H-ZSM-5 (80), in 

the temperature range of 55 – 85°C while keeping the PA, methanol and catalyst 

concentrations constant. It was observed that the production of methyl ester and the first 

order rate constants increased with increase in reaction temperature as expected. The 

increase in methyl ester production in the absence of additional water as a reactant was 

67% when temperature was increased from 55°C to 65°C and increased by 104% when 

temperature was increased from 65°C to 85°C; for an overall rate constant increase of 

240% from 0.0017 min-1 at 55°C to 0.0058 min-1 at 85°C. 

The activation energy for the esterification reaction on H-ZSM-5 (80) at 0% water 

was calculated and found to be 39.3 kJ/mol from the plots in Figure 4.13and Figure 4.14 

below. 
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Figure 4.13 Linearized plots for the determination of the first order rate constants for 
the esterification of Palmitic acid using H-ZSM-5 (80) 

0% water, 700 rpm. 

Figure 4.14 Arrhenius plot for activation energy determination on the esterification of 
Palmitic acid using H-ZSM-5 (80) 

0% water, 700 rpm. 

Since the optimum water for this reaction is 50%, the activation energy was 

calculated for this condition and found to be higher at 64.8 kJ/mol (Figure 4.15 and 
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Figure 4.16). This correlates with the findings of Jun et al. (Jun et al. 2003) of a higher 

activation energy when water was added. 

Figure 4.15 Linearized plots for the determination of the first order rate constants for 
the esterification of Palmitic acid using H-ZSM-5 (80) 

50% water, 700 rpm. 

Figure 4.16 Arrhenius plot for activation energy determination on the esterification of 
Palmitic acid using H-ZSM-5 (80) 

0% water, 700 rpm. 
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The activation energy of 39.3 kJ/mol compares very well with the 35.2 kJ/mol 

obtained by Kamarudin et al. (1998) using homogeneous acidic thionyl chloride (SOCl2) 

as catalyst for palmitic acid esterification (Kamarudin et al. 1998),  and 40.8kJ/mol using 

HZSM5 zeolites by Kirumakki et al. (2004) (Kirumakki, 2004). The increase in 

activation energy from the 0% water reaction to the 50% water reaction indicates more 

competition for the reactant molecules to access the active sites on the catalyst with the 

increase in volume of water initially. The activation energy also indicates that there are 

no issues with internal diffusion limitations. 

4.3.6 Effect of initial amount of fatty acids 

Upon testing a lower starting amount of palmitic acid (0.25g), it was observed 

that the reaction rate and FAME yields increased (Figure 4.17). The increase in rate when 

a lower amount of fatty acid was used could indicate that the adsorption of methanol is an 

important step of the mechanism as it also indicates the presence of more competition 

between palmitic acid and methanol for catalytic sites at the higher concentration of 

palmitic acid. Otherwise, more fatty acid should have produced more yields. Or another 

possible and more likely reason for this result is that a higher starting concentration of 

palmitic acid could have lower yields because more water is produced in that reaction 

that could adsorb on the zeolite site and compete with palmitic acid adsorption and 

reaction on the catalytic site, thus affecting the yields. This explanation is substantiated 

by the proposed model that is identified in the next 2 sections. 

138 



www.manaraa.com

 

 

 

  

 

    
 

 

 

 

 

 

Figure 4.17 Comparison of different initial palmitic acid concentrations 

4.3.7 Reaction kinetics with and without water, rate expressions for 
heterogeneous catalysts 

Having tested several models that varied different factors such as: a) reversibility, 

b) different permutations of the 1, 2, 3 or 4 of the reaction components being adsorbed 

onto the catalytic site, and c) one or two different sites being utilized; the top 3 models 

out of ~ 30 models tested were further investigated for best fit. The top 3 were selected 

based on excellent fits with the experimental data at all 9 different reaction conditions 

tested. Thus, the best model (ERF2) was selected from these as it explained the changes 

in water concentrations and temperature realistically and fit the experimental data 

excellently well. Figure 4.18 shows the top 13 models tested that fit at least 7 of the 9 

different reaction conditions. 
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Figure 4.18 Top 13 models tested and their R2 fits, the best model is highlighted in 
green 

Figure 4.19 R2 fits for the best model at all 9 different conditions 

The best model for all 9 conditions analyzed was a modified Langmuir-

Hinshelwood model with palmitic acid and water adsorbed on two different sites and was 

represented by: 

(4.5)

where r is the reaction rate, k is the apparent rate constant, Ca, Cb, Cc, and Cd represent 

the concentrations of palmitic acid, methanol, methyl palmitate, and water respectively. 
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Ka represents the equilibrium constant/affinity for the adsorption of palmitic acid onto the 

catalyst site and Kd represents the equilibrium constant/affinity for the adsorption of 

water onto the catalyst site. Ke is the overall reaction equilibrium constant. Figure 4.20 

graphically illustrates the fit of the model for one of the 9 conditions. 

Figure 4.20 Fit of experimental data to the model for the 50% water reaction at 65 °C 
on H-ZSM-5 (80) 

The values for the model parameters obtained are shown in Table 4.3. Here, k has 

units of mol/m3min (same as the overall rate, r), Ka and Kd have units of m3/mol, and Ke 

is dimensionless. 

Table 4.3 Parameters for the best model at 9 different reaction conditions 

Best 
model 

65 °C 55 °C 85 °C 

Water 
content 

0 % 10% 20% 50% 70% 0 % 50% 0 % 50% 

k 0.027 0.111 0.223 0.332 0.425 0.012 0.089 0.066 3.001 

Ka 2.242 4.489 4.155 4.220 2.625 1.973 3.312 3.032 5.844 

Kd 2.411 0.065 0.052 0.015 0.027 6.191 0.016 1.784 0.043 

Ke 0.001 0.142 0.287 1.142 1.250 0.987 1.196 0.012 6.058 
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As seen in Table 4.3, the adsorption of palmitic acid (Ka) increases as water 

concentration increases (up to 70% water) which is reasonable because fatty acids are 

more hydrophobic than water and are more likely to adsorb to the hydrophobic catalyst 

surface than water is. Similarly, the adsorption of water (Kd) decreases as water content 

increases and is explained by water molecules joining the rest of their polar, hydrophillic 

bulk rather than the hydrophobic catalyst. The rate constants, k, increase as water content 

increases because the decreasing affinity of water for the catalytic sites as water content 

increases makes more sites available for the preferentially-adsorbed palmitic acid to react 

and move the reaction forward faster. This is supported by the corresponding increase in 

Ka, the affinity for fatty acid adsorption. 

Upon using this best model to test a 10th reaction condition, with the initial 

palmitic acid mass changed from 0.5g to 0.25g, the model had a similar trend and fit 

experimental data excellently as shown in Figure 4.21 with R2 fit of 0.992 further 

validating the model. The Ka and Kd for this reaction condition shows that there was 

increased adsorption of palmitic acid and decreased adsorption of water when compared 

to the 0.5g reaction at 65C and 0% water. This illustrates that at 0 % water, the smaller 

water product that was formed due to lower initial PA concentration, allowed a higher 

rate to be observed because there was less competition for acidic sites by the water 

molecules.  
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 0 %, 65 °C, 0.25g 

k 0.047 

Ka 4.749 

Kd 0.006 

Ke 1.115 

 
Figure 4.21 a) Fit of experimental data to the model for the 0% water reaction at 65 °C 

on H-ZSM-5 (80) with initial PA mass of 0.25g, b) model parameters 

Other models tested in literature had methanol and acid adsorbed and no 

𝑘𝐾𝑎𝐶𝑎𝐶𝑏 reversibility: 𝑟 = (Kirumakki et al. 2006). However, these did not work for 
1+𝐾𝑎𝐶𝑎+𝐾𝑏𝐶𝑏 

our system. 

4.3.8 Proposed reaction mechanism 

Having determined the best model to be: 

𝐶𝑐𝐶𝑑 (𝐶𝑎𝐶𝑏− ) 
𝑟 = 𝑘 𝐾𝑒 (4.6)

(1+𝐾𝑎𝐶𝑎+𝐾𝑑𝐶𝑑)2 

We see from the numerator that reversibility of the reaction is significant, and we 

also see from the squared denominator that there are two different sites present in the 

reaction mechanism. This model was developed based on the assumption that surface 

reaction (rather than adsorption or desorption) was the rate-determining step. 

The proposed mechanism assumes that palmitic acid (PA) is adsorbed onto a catalytic 

site (S1) and then the adsorbed intermediate (PAS1) reacts with methanol (M) in the bulk 

solution with an available site (S2) nearby.  Methyl palmitate (MP) and water (W) are 
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formed but water adsorbs onto the nearby available site (S2) to form an intermediate 

(WS2).  Then the intermediate, WS2, desorbs the water molecule formed into the bulk 

solution as shown in the steps below: 

PA + S1  PAS1 (4.7) 

PAS1 + S2 + M  MP + WS2 + S1 (4.8) 

WS2  W + S2 (4.9) 

This mechanism would be very straightforward if reversibility did not play an important 

role, but it does, as each of the above steps are reversible. This is what plays into the 

unique water effect phenomenon discussed in Section 4.3.3. 

It is possible that the reaction needs a neighboring empty site so the produced 

water can adsorb on it and the reaction rate may be hindered if there are not enough S2 

sites, due to the reverse reaction of equation 7 or water initially present occupying the 

catalytic sites. The proposed mechanism is illustrated in Figure 4.22. 
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Figure 4.22 The proposed mechanism 

This proposed model also shows that reversibility in the numerator is significant, 

which would be expected as the water content increased. It was also observed that none 

of the top 3 models had methanol adsorption. 

The reason for the 50 % behavior can be explained by the rate of transfer of water 

in and out of the catalyst in Equation 4.7 being equal, causing a net higher FAME yield 

than at other concentrations where the rate of transfer of water into the catalyst might 

dominate the rate of transfer out, causing more catalytic sites to be used up and 

unavailable for palmitic acid adsorption. The reason for the 70 % low yield despite high 

rate constants is that the water concentration is so high that the water concentration 

driving force dominates FAME production. 
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In the case of the 90% water reaction, the R2 obtained on over 20 models tested 

never exceed 0.22. This could be due to the fact that there was so much water in the 

reaction mixture that there could have been inefficient mixing between organic palmitic 

acid and inorganic water that there wasn’t a proper esterification. Also, the reaction 

dynamic is expected that there would be different reaction vapor pressures as water 

content increased and could contribute to 90% water reaction behaving differently. 

4.4 Conclusions 

In the study of the effect of water on esterification of palmitic acid to determine 

the optimum water content for FAME production, the 80:1 ZSM-5 catalyst was the most 

active catalyst of the 5 zeolites tested. It was determined that the optimum water content 

was 50%. Adding water affected the FAME yield negatively for all water levels except 

50% and the rate constants for all reactions with water added were significantly lower 

than that for the reaction in the absence of water. Assuming this behavior is the same 

with the fatty acids in the sludge, sludge would need to be dried down to 50% moisture 

before reaction for highest FAME yield. This 50% water content can be used to 

hydrolyze and proceed with esterification without removing the water since esterification 

usually requires milder reaction conditions than transesterification and it is also a 1-step 

reaction instead of a 3-step reaction as with transesterification. The heterogeneous 

catalytic rate law that worked best was a modified Langmuir-Hinshelwood model 

indicating a reversible reaction with palmitic acid and water adsorbed on two different 

sites and was depicted by: 

(4.10) 
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If water is still an issue, the use of a water adsorption apparatus in tandem with 

the esterification reactor can be considered where biodiesel production has been shown to 

increase from 61 to 91% (Lucena et al. 2008), or consider using codistillation or 

adsorption on drying agents for water removal. 
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CHAPTER V 

BIODIESEL PRODUCTION FROM RHODOTORULA GLUTINIS AND ACTIVATED 

SEWAGE SLUDGE 

5.1 Introduction 

Biodiesel, as discussed in Chapter 1, has been shown to be a promising fuel but 

still has challenges with production volumes due to the high cost and limited availability 

of feedstocks. 

Typically catalysts (homogeneous and heterogeneous) are used for the production 

of biodiesel. However the biggest disadvantage with using catalysts in working with 

microbial feedstocks, including sludge is the presence of large amounts of water, which if 

not removed from the system, could deactivate the catalysts and thus reduce FAME yield. 

Chapters 3 and 4 investigated the use of heterogeneous catalysts for biodiesel production 

from triglycerides and palmitic acid (as a surrogate of free fatty acids) with high water 

content.  While the results of Chapter 3 showed that the porous metal oxide catalysts 

were not suitable for use with oil feedstock containing relatively high moisture, the 

optimum zeolite catalyst studied in Chapter 4 had better FAME yields as a result of 

adding an optimum amount of water of 50% (by volume). Other problems with catalyst 

use include high cost and difficulty with separating catalysts from the products (Demirbas 

2007a). Thus, the benefit of investigating non-catalytic transesterification. 
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An alternative way to avoid the high cost of dewatering sludge (as high as 50% of 

biodiesel production cost (Mondala et al. 2009)) prior to reaction is to develop a process 

where wet sludge can be introduced with little or no drying to produce biodiesel. The 

objective of this part of the project is to examine the feasibility of using sludge with high 

water content as a feedstock to produce biodiesel by investigating the optimum yield that 

could be obtained using a 1-step method of direct transesterification at supercritical 

methanol conditions and a 2-step method of hydrolysis followed by esterification in 

supercritical methanol. High yields of FAMEs from either method could result in a 

process to avoid the dewatering costs. 

Reactions in supercritical methanol have the potential of producing high FAME 

yields faster and with relatively high tolerance to water content. Supercritical methanol 

allows the use of the original microbial media instead of extracted and purified oil as the 

source of triglycerides for transesterification. It can work with any lipid-containing 

feedstock and allows for cost savings on the solvent (typically hexane) extraction 

process. By reducing the multiple process steps to extract oil before producing alkyl 

esters, the use of additional reagents, solvents and unit operations is reduced, potentially 

reducing the cost of the final product. Therefore, this study will contribute to the 

improvement of the in-situ transesterification supercritical methanol process for 

microbial feedstocks using a high-temperature, high-pressure batch reactor system. The 

supercritical methanol process is described in Section 5.1.1. 

The overall aim of this study was to evaluate an alternative, cost-efficient method 

for producing biodiesel from wet sludge by avoiding processing costs involved in: drying 

the sludge, adding catalysts, and separating catalysts from products. This was done using 
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2 methods: 1) the 1-step direct transesterification method, and 2) the 2-step method of 

hydrolysis of the lipids followed by esterification. 

The goals of the 1-step direct transesterification method were to: 1) optimize the 

reaction conditions for highest FAME yields by varying temperatures, methanol:solid 

ratios, and reaction times, 2) study the effect of water on biodiesel yield, 3) study the 

kinetics of the reaction to determine rate constants that can be used in the feasibility study 

for scale-up, and 4) compare yields and efficiency to the 2-step method of hydrolysis and 

esterification. 

The aim of the 2-step method, investigated by hydrolysis of Rhodotorula glutinis 

followed by esterification with supercritical methanol, is to assess the feasibility of 

reducing methanol consumed and energy consumption due to severe reaction conditions, 

while increasing biodiesel yield. This study also determines the rates of reaction, reaction 

mechanism and the effect of water in the system. 

Rhodotorula glutinis, an oleaginous yeast, is used as a surrogate for activated 

sludge since it has a more uniform composition and less variation between batches 

compared to raw activated sludge from the wastewater treatment plant which could have 

large inconsistencies depending on the days it was withdrawn from the treatment plant. 

Activated sewage sludge is a great alternative for both the 1-step and 2-step 

methods because the challenges and costs associated with dewatering can be turned to a 

benefit when the water content is used for hydrolysis whether concurrently (in the 1-step 

method) or consecutively (in the 2-step method). 
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Figure 5.1 The pressure-temperature phase diagram of methanol Source 

(Ebert 2008) 

5.1.1 Supercritical methanol properties and advantages 

A pure substance can exist in 3 phases: solid, liquid and gas. Of these, there is a 

critical point that exists between the gas and the liquid phases. Beyond this critical point, 

the fluid exists as a high density fluid that cannot be condensed any further, even if 

pressure and temperature are increased (e.g. in the case of methanol), this is referred to as 

a ‘supercritical fluid’ (Lee and Saka 2010). Supercritical methanol is a non-condensable, 

dense fluid with density approaching that of a liquid, while the viscosity and transport 

properties behave like that of a gas (de Boer and Bahri, 2011).  The phase diagram for 

methanol is shown in Figure 5.1. The critical temperature and pressure for methanol is 

239 °C and 8.09 MPa. 
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Supercritical methanol as a reactant has several outstanding properties and 

advantages for the transesterification and esterification reactions sludge oil compared to 

the conventional transesterification methods as described in Chapters 1 and 3.  Some of 

the advantages include: 1) high product yields in short reaction times, 2) no catalyst 

needed, 3) production efficiency, 4) high water tolerance, and 5) feedstock flexibility. 

5.1.1.1 High product yields in short reaction times 

Supercritical methanol has different avenues by which it allows high conversion 

of reactants in relatively short reaction times. The supercritical method has a shorter 

reaction time in the order of minutes compared to a number of hours in conventional 

processes.  

5.1.1.1.1 Increased miscibility of lipids with methanol 

Under supercritical methanol conditions, the miscibility of lipids with methanol 

increases  (He et al. 2007) and the 2-phase mixture of oil and methanol behaves as one 

phase due to the decrease in the dielectric constant of methanol (Kusdiana and Saka 

2001) and thus, produces an increase in reaction rates. Solubility of triglycerides in 

methanol is reported to increase at a rate of 2-3% (w/w) per 10 °C as the reaction 

temperature increased (Saka and Kusdiana 2001), which makes the reaction faster.  

Demirbas et al. (2005) showed that methyl ester yield averaged about 55% under 

subcritical conditions and 95% yield under supercritical conditions after 5 min reaction 

time (Demirbas 2005); while de Boer and Bahri report as high as 1000% increase in 

reaction rate between 270 °C and 300C (de Boer and Bahri 2011). Alenezi et al. 

describes the occurrence as resulting from ions produced from the alcohol causing the 
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mixture of oil and alcohol to combine as a single phase which accelerates the reaction 

(Alenezi et al. 2010). 

Also, improved mixing with nonpolar oil occurs due to the hydrophobic behavior 

of supercritical methanol. Lee and Saka state that the homogeneous reaction under 

supercritical conditions can be explained by two reasons: one is that an increase in 

temperature and pressure increases the solubility of triglycerides and the other is that the 

polarity of methanol decreased because the degree of hydrogen bonding decreases with 

increasing temperature (Lee and Saka 2010). This means that SCM has a hydrophobic 

nature with the lower dielectric constant that causes good mixing with oil which is 

nonpolar (Kusdiana and Saka 2001). 

5.1.1.1.2 Methanol also acts as a catalyst 

The increase in reaction rate with supercritical methanol is due to the fundamental 

structural change caused by the polarity, as it facilitates a much stronger direct 

nucleophilic attack by the methanol on the carbonyl carbon (Kusdiana and Saka 2004a). 

Thus, the hydrogen bonding of methanol causes the use of a catalyst to be unnecessary 

(de Boer and Bahri, 2011). 

5.1.1.1.2.1 Production Efficiency 

The supercritical methanol process can allow higher production efficiency 

(smaller number of processing steps) because it allows the elimination of the pre-

treatment (removal of fatty acids and moisture) capital and operating cost (van Kasteren 

and Nisworo 2007). Easier product separation (de Boer and Bahri 2011) also allows the 
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reduction in the post-treatment (e.g. neutralization, washing and drying) steps and costs 

(Ngamprasertsith and Sawangkeaw 2011). 

This also makes this process less harmful to the environment because it does not 

need any catalysts or chemicals, and the waste from pretreatment and post-treatment 

steps are reduced since these steps are not necessary. 

5.1.1.1.2.2 Tolerance of Water 

Kusdiana and Saka report that the supercritical methanol process is highly tolerant 

of water up to 50% volume (Kusdiana and Saka 2004a), so feedstock drying may not be 

required and thus, promising for use with sludge. Levine et al. demonstrated that 

supercritical in-situ transesterification of wet algal biomass (after hydrolysis) in ethanol 

gave 100% alkyl ester yield (Levine et al. 2010). Similarly, transesterification with 

supercritical methanol was substantially unaffected by water, compared to alkaline and 

acid catalysts that are adversely affected. With a water content of 35%, transesterification 

of rapeseed oil with supercritical methanol demonstrated complete conversion to methyl 

esters after 4 minutes at 350 °C with a methanol:oil ratio of 42:1(de Boer and Bahri 

2011). However, the high probability of the reverse reaction occurring with high water 

content at equilibrium needs also to be considered. 

5.1.1.1.2.3 Feedstock flexibility 

It can handle the presence of fatty acids in feedstock (de Boer and Bahri 2011), 

unlike other conventional methods which produce saponified products when free fatty 

acids are present.  This is an important advantage because it makes the supercritical 

process for biodiesel production feedstock neutral. 
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Table 5.1below summarizes the main differences between conventional 

transesterification method (using sodium hydroxide as catalyst) and supercritical 

methanol. 

Table 5.1 Comparison between supercritical methanol and other common methods 

Conventional Method Supercritical Methanol 

Method 

Reaction time 1-8h 2 – 30 minutes 

Reaction Conditions 0.1 MPa, 30 – 65 °C >8.09 MPa, >239 °C 

Catalyst Acid, base or enzyme None 

Free fatty acids Saponified products Methyl esters 

Water tolerance Very low High 

Yield Normal Higher 

Removal for Purification Methanol, catalyst, 

saponified products 

Methanol 

Process Complex Simple 

Modified from Table 2 in (Saka and Kusdiana 2001) 

The drawbacks of supercritical methanol are the high reaction temperature and 

pressure which make it energy intensive. Also, the distillation process to recover excess 

alcohol requires significant energy. To keep the process at an environmentally friendly 

advantage, it is recommended to use low energy separation methods such as a medium 

pressure flash drum for alcohol recovery (Diaz et al. 2009). 
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5.1.2 One-step method: Direct transesterification 

In the 1-step method, the transesterification reaction with supercritical methanol 

proceeds as shown in Figure 5.2, except a catalyst is not needed. 

Figure 5.2 Transesterification reaction. 

Methanol is most commonly used because of its low critical point and higher 

activity (Warabi et al. 2004), however ethanol can also be used at supercritical conditions 

(Pinnarat and Savage 2010). Many authors in the literature have had promising results 

using supercritical methanol with various feedstocks. 

Saka and Kusdiana started work in this area using rapeseed oil and achieved as 

high as 95% conversion after 240 s at reaction conditions of 342 °C, 45 MPa, and 42:1 

methanol:oil molar ratio. Valle et al. studied the transesterification of fodder radish oil 

and found optimum operating conditions to be 592K, 39:1 methanol: oil molar ratio, and 

22 min reaction time to obtain an ester yield of 96% by weight fraction (Valle et al. 

2010). 

Patil et al. studied the transesterification of wet algae and found the optimal 

conditions from their response surface methodology analysis were: wet algae-to-

methanol (wt/vol) of 1:9, temperature of 255 °C and time of 25 min, while they obtained 
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a maximum fame yield of 86% at conditions of 260 °C, wet algae to methanol ratio of 12 

(wt/vol) and 30 minutes reaction time (Patil et al. 2011). 

5.1.2.1.1 Reaction Variables 

Temperature and pressure are very important factors that affect the yields of the 

transeterification reaction. When Saka and Kusdiana investigated the reaction rate from 

200 °C/7 MPa to 487 °C/105 MPa, they reported that the rate constant increased 35 times 

from 200 °C/7 MPa to 300 °C/14 MPa, and 400 times from 200 °C/7 MPa to 487 °C 

/105 MPa (Kusdiana and Saka 2001). Although high temperature is beneficial to the 

transesterification yield, it causes thermal decomposition of unsaturated fatty acids above 

300 °C (Imahara et al. 2008). 

de Boer and Bahri point out that the pressure of supercritical methanol reactions 

under batch conditions depends on 3 factors: the temperature of the experiment, the 

methanol to oil ratio and the quantity of reactants (de Boer and Bahri 2011). They report, 

along with Kusdiana and Saka, that pressure increases at least 5 fold above 320 °C 

(Kusdiana and Saka 2001). 

While transesterification with supercritical methanol has been reported to 

produces high yields, severe conditions like a high temperature of about 350 °C are often 

required to achieve complete conversion. This can be very expensive and could cause 

loss in FAME yield by degradation of some FAMEs at high temperature. To reduce the 

severity of the combination of high temperature, high pressure, and high methanol:oil 

ratio conditions, three methods can be used: 1) adding a catalyst, 2) co-solvent use, and 3) 

two-stage processing (de Boer and Bahri 2011). 
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5.1.2.1.1.1 Adding a catalyst 

Use of catalysts in supercritical methanol conditions has similar problems as acid 

or base-transesterification catalysis in the presence of water and FFA, and is not seen as 

beneficial to the process. The problems of separating the catalysts and catalyst poisoning 

would be issues dealt with. Moreover, the aim of this work was to avoid the additional 

cost of using catalysts, so this method was not used. 

5.1.2.1.1.2 Use of Co-solvents 

de Boer et al. defines a co-solvent as a material that is added to the reactive 

mixture to adjust the critical point and lessen severe reaction conditions (de Boer and 

Bahri 2011). Cao et al. also report that the addition of propane as a co-solvent increases 

the solubility between methanol and vegetable oil, allowing the formation of a single 

phase at a much lower temperature. This required a much lower molar ratio of methanol-

to-oil, causing the reaction pressure to reduce significantly (Cao et al. 2005). In their 

study, they were able to lower the optimal reaction temperature from 350 °C to 280 °C by 

incorporating a propane/molar ratio of 0.05.  With this ratio at 280 °C and methanol/oil 

ratio of 24, they obtained a soybean oil conversion of 98% in 10 minutes at a pressure of 

only 12. 8 MPa (Cao et al. 2005). This is a much less severe reaction condition compared 

with Saka and Kusdiana’s process conditions of 350 °C and 45 MPa on rapeseed oil 

mentioned above.  Hegel et al. studied supercritical transesterification with co-solvents 

and found that the addition of 24% by weight of propane decreased the transition 

temperature of soybean oil-methanol (from a vapor-liquid to a one-phase supercritical 

system), from 315 °C to 243 °C when a methanol to oil molar ratio of 65:1 was used 

(Hegel et al. 2007). While it can serve as a positive alternative, it was not in the scope of 
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this study since the aim is to reduce additional raw material costs and use already-

available material. 

5.1.2.1.1.3 2-stage processing 

Saka’s group was the first to evaluate this study when they developed a two stage 

supercritical methanol process called the “Saka-Dadan” method (Kusdiana and Saka 

2004b). In this study, we will be evaluating a similar 2-step process of hydrolysis 

followed by esterification to take advantage of the presence of water in the system.  This 

process is described in the following section. 

5.1.3 Two-step method of hydrolysis followed by esterification 

Studies have been conducted to evaluate the production of biodiesel using a 

combination of hydrolysis and supercritical fluid technologies. This study is beneficial 

because: 1) increasing the water tolerance potentially reduces the cost of biodiesel 

production by reducing drying, 2) there is no additional costs incurred for catalysts, 3) 

supercritical esterification can be performed at lower temperatures, with less methanol 

and in less time, and can achieve higher conversions compared to SC transesterification 

(Levine et al. 2010).  The 2-step process proposes that the oils (triglycerides) are first 

hydrolyzed to form fatty acids and then esterification reaction follows the hydrolysis to 

convert the fatty acids to FAMEs. 

Hydrolysis of oils and fats is a reaction in which water molecules split a 

triglyceride to form glycerol and fatty acids. It is a 3-step mechanism where one molecule 

of triglyceride (TG) is hydrolyzed to 1 molecule of diglyceride (DG) and fatty acid (FA), 

onwards until one molecule of monoglyceride (MG) is hydrolyzed to 1 molecule of 
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glycerol and FA giving a total of 3 molecules of FAs. Typically, hydrolysis is carried out 

at 100–260 °C and 100–7000 kPa using 0.4–1.5 (w/w) initial water to oil ratio with or 

without catalysts (Moquin and Temelli 2008).  This hydrolysis and its reverse reaction 

occurs without catalyst in subcritical water (Minami and Saka 2006). The supercritical 

esterification reaction is the same reaction as that at subcritical temperatures discussed in 

Chapter 4, except a catalyst is not used. The hydrolysis and esterification reactions are 

shown in Figure 5.3 and Figure 5.4, respectively. 

Figure 5.3 Hydrolysis of reaction for converting triglycerides to glycerol and free fatty 
acids. 

Where R and R’ are alkyl groups 

Figure 5.4 Esterification reaction for converting free fatty acids to esters and water. 
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Researchers have demonstrated that following this 2-step process can allow 

moderate reaction conditions (270C/7-20MPa) as opposed to a one-step process 

(350C/20-50MPa) (Minami and Saka 2006). They showed that temperature could be 

increased from 250 °C to 270 °C to improve fatty acid yield for hydrolysis since they 

obtained a complete conversion of triglycerides to fatty acids when the reaction pressure 

was above 7 MPa (Minami and Saka 2006). Minami and Saka point out that with 

hydrolysis at lower temperatures e.g. 250C and 270C, the yield of FA increases very 

slowly in the early stage of the reaction (Minami and Saka 2006). They also found that 

the hydrolysis reaction always reached equilibrium at around 90 wt.% yield of fatty acids 

at higher temperatures (even though there was a higher rate of fatty acid formation), 

when the volumetric ratio of water to rapeseed oil was 1/1, which might be due to the 

backward reaction of hydrolysis. Under the conditions of 270 °C and 20 MPa, the yield 

of FA reached 90 wt.% after 60 min (Minami and Saka 2006). The treatment time for 

hydrolysis is critical to the prevent reverse reaction from occurring (de Boer and Bahri 

2011). 

5.1.3.1 Benefits of the 2-step Hydrolysis followed by Esterification Method 

There are numerous benefits that can be gained using the 2-step method which 

include: 1) reduction in methanol use since supercritical esterification requires much less 

methanol than transesterification (Kusdiana and Saka 2004b, Minami and Saka 2006) and 

thus, less energy for the process, 2) reduction in severity of reaction conditions compared 

to the 1-step method. Esterification can be performed at a lower reaction temperature and 

at a faster rate than transesterification (Kusdiana and Saka 2004b, Warabi et al. 2004), 3) 
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the reaction is faster because esterification has only one reaction step unlike 

transesterification which has 3 reaction steps (de Boer and Bahri 2011). In a comparison 

study, Kusdiana and Saka showed that transesterification reached a plateau of 76% 

conversion after 40 min, while esterification reached a conversion of more than 95% after 

20 min, 4) the excess water that comes with the sludge feedstock serves as a benefit and 

can be used for hydrolysis without supplying additional water, and 5) reduces loss of 

FAMEs due to thermal degradation at high temperatures. 

In the Saka-Dadan process, Kusdiana and Saka studied hydrolysis of rapeseed oil 

in subcritical water followed by methyl esterification of the fatty acids in supercritical 

methanol and reported optimum condition as 270 °C for 20 min for hydrolysis and 

methyl esterification. This was conducted using a 5ml Inconel reactor heated in molten 

tin (Kusdiana and Saka 2004b). They reacted 1ml oil and 4ml water for hydrolysis (1:217 

molar ratio of oil to water). It took 12 seconds to reach their reaction temperature. 

Afterwards, the product settled for 30 min and separated into the upper (hydrolyzed 

product) from lower (water and glycerol) portions. They found that at 350 °C, they were 

able to achieve complete hydrolysis conversion after 3 minutes. However, at 270 °C and 

300 °C, it took about 12 and 20 minutes respectively to reach the same yield of fatty 

acids. They also discussed the effect of reaction pressure on the yield of fatty acids from 

rapeseed oil treated at 270°C for 20 min, reporting that a complete conversion of 

triglycerides to fatty acids was achieved when the reaction pressure was above 7 MPa 

(Kusdiana and Saka 2004). Since the hydrolysis reaction is a reversible reaction, it has 

higher fatty acid yields when a large excess of water is used or if one of the products is 

removed from the reaction mixture. Conversely, the presence of water in fatty acids 
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would have a negative effect on the methyl esterification reaction (Kusdiana and Saka 

2004b). 

The same procedure and equipment was used for conducting subsequent 

esterification at 270 °C and 17 MPa. They charged the reaction vessel using authentic 

fatty acids as well as fatty acids prepared from hydrolysis with a methanol-to-fatty acid 

molar ratio of 42, obtained almost complete conversion in 20 min. From their comparison 

of the 1- and 2-step method FAME yields, they reported that a significantly higher 

FAME yield could be produced via the 2-step method than the 1-step method. For 

example, at the same reaction time of 40 min, the 2-step method produced almost 30% 

more in FAME yield than the 1-step method (Kusdiana and Saka 2004b). It is important 

to note that the reaction time for the 2-step method refers to the sum of those of 

hydrolysis and methyl esterification steps. 

Interestingly, Minami and Saka found that in supercritical esterification, having a 

higher concentration of fatty acid was more important than having an excess 

concentration of methanol to prevent the backward reaction because the fatty acid acted 

as a catalyst so the higher FA concentration as a result of a small amount of methanol 

used in the reaction can enhance the FAME yield. 

5.1.3.1.1 Effect of Initial Water Content 

In conventional catalyzed biodiesel production, the presence of water initially in 

biodiesel feedstock could cause negative effects such as consuming the catalyst and 

reducing the catalyst efficiency (Kusdiana and Saka 2004a). It could also allow the 

reverse of the esterification reaction to occur where the formed methyl esters are 

converted back to fatty acids. 
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To avoid water’s negative effects with conventional acid and base method, 

Kusdiana and Saka evaluated the effect of the presence of water (up to 50%) in the 

supercritical methanol method at 350 °C, 43MPa and 42:1 methanol:oil molar ratio and 

found that it did not have a significant effect on FAME yield, as almost complete 

conversions were always achieved irrespective of the water content (Kusdiana and Saka 

2004). Holliday et al. state that water can dissolve both non-polar and polar solutes since 

its dielectric constant can be modified from a value of 80 at room temperature to a value 

of 5 at its critical point (Holliday et al. 1997). Therefore, they point out that water can 

solubilize most non-polar organic compounds like hydrocarbons at temperatures above 

250 °C. Also, they report that water at temperature between 280°C and 350 °C is rich 

with ionic products and when mixed with polar methanol, the mixture will have both 

strong hydrophilic and hydrophobic properties and this could be one of the reasons why 

the reaction rate is higher in the water-added supercritical methanol treatment (Holliday 

et al., 1997). 

5.1.4 Rhodotorula glutinis 

Microbial oils produced by oleaginous microorganisms that include bacteria, 

yeasts, molds and algae are currently seen as promising potential feedstock for biodiesel 

production due to the similarity in their fatty acids composition to that of vegetable oils 

(Saenge et al. 2011). However, not all lipids obtained from microbial biomass are suitable 

for making biodiesel. Only free fatty acids and saponifiable lipids (lipids with fatty acid 

ester linkages) can be converted to alkyl esters (Saenge et al. 2011). Oleaginous species 

are microbes that are able to accumulate at least 20% of their biomass as oils in the form 

of triacylglycerols, and include yeasts, fungi and algae (Ratledge and Wynn 2002, 
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Ratledge and Cohen 2008). The oil accumulation occurs as a trait of an unbalanced 

metabolism. When all necessary nutrients are present in the growth medium for the 

microbes, new cells are synthesized with minimal levels of lipids. However, when the 

cells run out of a key nutrient they start to accumulate oils. Thus for lipid accumulation to 

occur, the growth medium has to have an excess of carbon and to have the deprivation of 

a key nutrient. In the case where microorganisms or sludge produce a small amount of 

lipid, this strategy can also be used to enhance/increase the lipid content produced by the 

microbes (Mondala et al. 2012). 

Oleaginous yeasts are single-celled fungi that have at least 20% of their dry 

weight made up of lipids (Khot et al. 2012). They also contain membrane lipids in 

addition to triacylglycerols. Rhodotorula glutinis (RG) is an oleaginous, red yeast that 

was used in this study as a model for sludge to optimize the production of biodiesel using 

supercritical methanol and avoid the variation in sludge constituent compounds. For 

oleaginous yeasts like RG, it has been well established that the lipid yield is high when 

they are grown in a medium with high carbon to nitrogen ratio (C:N) (Saenge et al. 

2011). Therefore, only in low nitrogen medium will they channel carbon towards the 

accumulation of triacylglycerols (or triglycerides) as storage lipids. The amount of oil 

that the cells can store depends on the species. For example, Ratledge and Cohen report 

Rhodotorula glutinis to have a maximum lipid content of 72% (w/w) and a fatty acid acid 

profile of 37% of C16:0, 3 % of C18:0, 47% of C18:1, and 8% of C18:2 (Ratledge and 

Cohen 2008). 
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5.2 Experimental Materials and Methods 

5.2.1 Chemicals and Gases 

37-component FAMEs and FAMEs mix C8-C24 of with saturated, mono-

unsaturated and poly-unsaturated fatty acid methyl esters (Supelco, Bellefonte, PA), 

monoolein, diolein and triolein standards, N-Methyl-N-trimethylsilyltrifluoroacetamide 

(MSTFA) were obtained from Sigma Aldrich. Heptane, chloroform, pyridine, methanol 

and sodium sulphate were obtained from Fisher Scientific (Pittsburgh, PA, USA). All the 

gases used (He, H2, and air) for gas chromatography were of high purity grade and 

distributed by NexAir (Columbus, MS, U.S.A.). All chemicals, standard, and gases were 

used as received without further purification. 

5.2.2 Equipment 

5.2.2.1 Four hundred and fifty milliliter (450-ml) batch Parr® reactor 

The Parr® reactor set-up (Figure 5.5) was initially used because it allowed larger 

amounts to be reacted and could allow stirring and internal pressure reading. However, 

set-up for the batch reactor does not allow accurate study of the kinetics of the reaction 

due to heat loss at the top of the reactor, causing heating times to vary from 2 – 3 hr on 

different runs. Therefore, a new setup consisting of a fluidized sand bath and Swagelok® 

46ml reactor was later chosen to allow accurate analysis of kinetics. 
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Figure 5.5 Four hundred and fifty milliliter (450-ml) Parr® reactor for the 
supercritical methanol transesterification of activated sewage sludge. 

5.2.2.2 Fluidized sand bath and Swagelok® 46ml reactor 

Having reviewed the literature, the types of equipment used for similar reactions 

at high temperatures were: autoclave in an electric furnace (Demirbas 2005), Reactor 

equipped with condenser, preheater, and separator (He et al. 2007), Swagelok® unions 

heated in a molten tin bath (Warabi et al. 2004),  Swagelok® unions heated in a sand bath 

(Levine et al. 2010) and flow-type reactor with resistance heater and pump (Krammer and 

Vogel 2000). For our purposes which include kinetic analyses from samples at different 

time points, a compact set-up would offer easier sampling with minimal heating and 

cooling (e.g. 3-5 minutes) and at least allow reaction of triplicates at once. These were 

narrowed down to 2 types based on cost, and quick and relatively easy set-up: 

Swagelok® unions heated in a molten tin bath or Swagelok® unions heated in a sand 

bath. While heating small reactors in a molten tin bath has the advantage of quick heat 
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transfer, it has the disadvantages of releasing tin fumes, which was considered unsafe, 

and having a crude set-up. Thus, it was determined that a reactor with smaller volume in 

combination with the fluidized sand bath (Figure 5.6) was the best medium for our 

purposes.  The features are listed below: 

5.2.2.2.1 Forty-six ml 1-in diameter tube reactors 

These were made by swaging (2) 1-inch Swagelok® caps onto the ends of a 5-

inch length of 1-inch diameter tubing and 1” Swagelok® tubing and caps (to make 46 ml 

reactors). The pressure rating was 3100 psi with wall thickness of 0.083 in and volume of 

46 ml. The use of a 1-inch diameter reactor would allow the addition of a fitting to 

accommodate an internal temperature probe to ensure temperature accuracy. 

5.2.2.2.2 Fluidized sand bath 

These baths use aluminum oxide (Al2O3) fluidized by low-pressure air as a dry 

bath medium with excellent heat transfer properties to heat vessels placed in it. It gave 

fast heating, a wide temp range from 50 °C to 600 °C, and was safe to use because 

aluminum oxide is nonflammable and does not produce toxic fumes. The 51 lb capacity 

fluidized sand bath was obtained from Omega Engineering. Two heaters at the base 

heated the sand being fluidized. Multiple calibration tests were run to determine time for 

sand bath and internal temperature probe to reach set point. Aluminum oxide sand was 

96% purity. 

The disadvantage is that there was loss of some sand as it spilled out occasionally 

during fluidizing. A modification (Figure 5.7) was made to curtail the spills by adding a 

piece of air duct on top of the flange to keep the sand in. 
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Figure 5.6 Fluidized sand bath and 46-ml reactor from Swagelok® tubing for the 
supercritical methanol transesterification of activated sewage sludge and 
Rhodotorula glutinis. 

Figure 5.7 Modification to sand bath to limit spills 

Note-worthy concerns are that the stirring was not controlled, and the pressure 

inside the Swagelok® reactor could not be measured. These were addressed by: 1) 

assuming that at supercritical conditions, increased diffusivity allowed good mixing and 

mass transfer was not an issue, 2) purchasing a pressure transducer that could be added to 

measure the internal pressure on the reactor. 

172 



www.manaraa.com

 

 

  

 

 

   

 

 

 

 

 

   

  

         

   
 

 

5.2.2.2.2.1 Additional Precautions 

Applied Teflon tape to reactor cap’s thread for tighter seal, tightened with vice 

and dropped into sand bath at desired temperature. Monitored and recorded time till 

internal temperature stabilized at set point. The volume of methanol/product after 

reaction was measured to check for volume balance. 

5.2.2.3 Internal probe 

For accurate kinetics of the reaction, a reactor was modified to include the 

addition of a temperature probe for measuring the internal temperature of the reactor 

contents during reaction. For each reaction, this reactor fitted with the probe was always 

charged with the same amount of reactants as the other reactors, and was used to 

determine the internal temperature of the other reactors. The parts were obtained from 

Omega Engineering and included a combination of a thermocouple, a thermowell, a 

Swagelok® connector and ferrule fittings to attach the probe to the reactor as seen in 

Figure 5.8 and Figure 5.9 below. This combination rated for up to 5400 psi. The 

temperature probe with a wire made of fiberglass material had a temperature limit of 480 

°C which was satisfactory for our needs. 

a) b) c)   

Figure 5.8 a) Internal temperature probe, b) thermowell for probe, c) female connector 
used on reactor end 
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a) b) c) 

Figure 5.10 a) Heise ® DXD Digital pressure transducer, b) Initial transducer 
connection, c) 1/8-in tubing wrapped with heating tape 

 

Figure 5.9 Temperature probe fitted to the reactor 

5.2.2.4 Pressure Transducer 

A DXD Digital pressure transducer was purchased from Heise® to monitor 

reaction pressure. The pressure transducer was connected to one end of the reactor via a 

piece of 1/8-inch tubing to prevent the pressure transducer from being inserted into the 

hot sand bath in the range of 250 °C - 300 C. The 1/8-inch tubing allowed the transducer 

to be directed away from excessive heat due to radiation from the sand bath, although the 

tubing would need to be changed often between runs to not contaminate samples since it 

is tougher to clean. A ¼-inch female NPT hole was drilled into the reactor cap to allow 

the connection to the transducer.  The connection is shown in the Figure 5.10 below. 
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It was used to test the pressure of 9 ml of methanol in the reactor at its boiling 

point (65 C). Initial results of that test indicated a pressure that slowly rose to 3 psi but 

did not hold which suggested that the length of the 1/8 inch tubing was too long and there 

was probably a leak. The tubing length was reduced and the pressure indicated increased 

to ~ 8psi. Since the 1/8-inch tubing was not submerged in the sand bath but was exposed 

to ambient temperatures which would cool the reactor contents and reduce the pressure, 

the 1/8-inch tubing was wrapped with heating tape that was heated with a rheostat to 65 

C. This ensured that it was maintained at the set point and the reactor contents would not 

condense. With that modification, the pressure obtained was 13.8 psi, which is 6% lower 

than the expected atmospheric pressure of 14.7 psi, but a marked improvement. 

The pressure transducer was then used to try to determine the pressure of plain 

methanol at the supercritical condition of 275 C but gave an error which turned out to be 

caused by the transducer being damaged from overheating. Thus, the transducer was not 

able to be used to investigate reaction pressures at the supercritical methanol reaction 

conditions. 

5.2.3 Procedures 

5.2.3.1 Sludge prep and Initial Lipid content determination 

Activated sludge samples were obtained from the Hillard Fletcher wastewater 

treatment plant in Tuscaloosa, AL in 4-gallon plastic buckets and were transported in ice 

chests to the Renewable Fuels and Chemicals Laboratory at the Dave C. Swalm School 

of Chemical Engineering at Mississippi State University. Sludge was concentrated by 

vacuum filtration overnight. The supernatant was discarded and the filtered solids were 
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centrifuged using an IEC Centra GP6 centrifuge (Thermo Electron Corp., Milford, MA, 

U.S.A.) operated at 3000 rpm for 20 min. The concentrated sludge was spread into 150 x 

15 mm standard polystyrene petri dishes (Fisher Scientific, Pittsburgh, PA, USA), frozen 

at -18 C using a ColdTech freezer (Jimex Corp., Hayward, CA, USA) and freeze-dried 

using Freezone 2.5 freeze dry system (LABCONCO, Kansas City, MO, USA) for 5 days. 

The freeze-dried sludge contained about 95% (weight) solid, determined by Ohaus MB45 

infrared heater (Ohaus, Pine Brook, NJ, USA). The freeze-dried sludge was crushed 

using mortar and pestle, homogenized and stored in the freezer until use.  For the 

reactions in 46 ml reactors, sludge was completely dried using freeze-drier and 

rehydrated to 90% water (based on solids) before use. 

5.2.3.2 Feedstock (Rhodotorula glutinis) Production and Initial Lipid content 
determination 

Rhodotorula glutinis (RG) was grown in the laboratory from a mixture of yeast, 

nutrient solution and Y-M broth in 2000 ml baffled flasks with a foam seal to improve 

flow of oxygen and lipid yield. The flasks were placed in a shaker (New Brunswick 

Scientific Co., Edison, NJ, USA) at 30°C over 7 days. The nitrogen-rich medium was 

developed from a mixture of various nutrients which include (per liter): yeast extract 

[Fisher Scientific], 0.5g; Na2HPO4•12H2O, 1.0 g; KH2PO4, 1.0 g; MgSO4•7H2O, 0.4 g; 

(NH4)2SO4, 4.0 g; FeSO4 solution (4.0 g/L FeSO4•7H2O, Fisher Scientific), 6.0 ml; and 

trace mineral solution, 10 ml. The trace mineral solution consisted of (per liter): 

CaCl2•2H2O, 3.6 g; ZnSO4•7H2O, 0.75 g; CuSO4•5H2O, 0.13 g; MnSO4•H2O, 0.50 g; 

CoCl2•6H2O, 0.13 g; Na2MoO4•2H2O, 0.17 g (Fisher Scientific). The carbon and energy 

source was 60g (or 80g) of glucose. 
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The media containing the cells was transferred to 50-ml plastic centrifuge tubes 

and centrifuged at 3200 rpm for 15 minutes. The supernatant was decanted and the cells 

rinsed with 40 ml of water, centrifuged, and decanted to remove nutrient media and stop 

growth of the cells. The centrifuged, wet RG in tubes were stored in a -80°C freezer 

before freeze-drying to 95% solids. Freeze-dried cells were stored in the -20°C freezer 

until use. Before use, 90% moisture content is determined from (1.8g of water)/(0.2g of 

cells + 1.8g of water). Figure 5.11 illustrates the steps for RG production 

Figure 5.11 Steps for the growth of Rhodotorula glutinis cells 

5.2.3.3 Supercritical Methanol Transesterification 

5.2.3.3.1 Reactions in 450ml Parr® Reactor 

Activated sludge obtained from a wastewater treatment plant in Tuscaloosa, AL 

was filtered to a wet paste of 93% water and reacted with methanol in a 450-ml batch 

reactor at 300°C, 300 rpm for 6 hours. The pressure obtained in the reactor was 

approximately 2300 psi. 
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5.2.3.3.1.1 Parr® Reactor Work-Up Procedure 

The reaction product was collected and filtered first by vacuum filtration before 

extraction. The volume of the filtrate was recorded, and 20 ml of the filtrate was 

transferred to a 60-ml borosilicate vial on which a modified Bligh & Dyer extraction was 

done twice. First by adding chloroform and water to get the chloroform - methanol -

water volume ratio of 1:2:0.8 for a monophasic extraction, followed by a biphasic 

extraction twice at the chloroform - methanol - water volume ratio of 2:2:1.8 (Bligh and 

Dyer 1959). After the addition, the mixture was stirred using a vortex mixer for 2 minutes 

and centrifuged at 2000 rpm for 5 minutes. The extracted chloroform layer was 

evaporated to dryness at 45°C under a 15 psi stream of nitrogen using TurboVap LV 

(Caliper Life Sciences). The dry product was weighed, re-dissolved in chloroform and 

analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry 

(GCMS). The identification of FAMEs was confirmed by using the Supelco FAMEs 

standard for 37 FAMEs. The solids on the filter paper were also dissolved in chloroform 

and analyzed for any residual compounds. 

5.2.3.3.2 Reactions in 46 ml batch reactors 

The configuration in the sand bath for all reactions, except where noted, was 1 

temperature probe reactor with (3) 46-ml reactors for each sample. All four reactors 

would have the same content for any given reaction so the internal temperature probe 

could more accurately predict the internal temperature in the other reactors, assuming 

uniform heating in the sand bath. The temperature controller was set to a temperature 15 -

20 degrees higher than the desired set point initially and changed to the desired set point 

after reactors were dropped into the sand bath to reduce delay in heating. Internal 
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temperature equilibrating times were 10 minutes or less after reactors were first dropped 

into the sand bath. Reactors were dropped in a bucket of cold water to cool after reaction. 

5.2.3.4 Work-Up Procedure for 46ml batch reactor 

The reaction product was collected, reactor walls rinsed and pooled, volume 

recorded, and lipids were extracted using a similar modified Bligh & Dyer procedure as 

described in section 5.2.3.3.1 (Bligh and Dyer 1959). The extraction was done by adding 

chloroform and water to get the chloroform - methanol - water volume proportion of 

1:2:0.8 for a monophasic extraction. This was followed by adding more chloroform and 

water for a biphasic extraction at the chloroform - methanol - water volume proportion of 

2:2:1.8. After the chloroform and water addition, the mixture was stirred using a platform 

shaker (New Brunswick Scientific Co., Edison, NJ, USA) for 10 minutes and centrifuged  

at 1800 rpm for 15 minutes before removing the bottom chloroform layer containing the 

lipids. The biphasic extraction was done twice and the pooled chloroform layer extract 

was evaporated to dryness at 45°C under a 15-psi stream of nitrogen using TurboVap LV 

(Caliper Life Sciences). The dry product was weighed, re-dissolved in chloroform and 

analyzed by GC and GCMS for FAME yields. 

Figure 5.12 illustrates the difference in compounds obtained from the sludge 

product chromatogram and the RG product chromatogram. The RG chromatogram is 

much cleaner with 3 predominant FAMEs - methyl palmitate, oleate, and stearate, unlike 

the more diverse sludge profile containing FAMEs and unknowns. Hence, the reason why 

RG was used to simplify the optimization of reaction conditions instead of sludge. 
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a) 

b) 

Figure 5.12 Sample chromatogram of products from supercritical transesterification 

a) sludge, b) Rhodotorula glutinis 

   

  

 

  

 

5.2.4 Experimental Design 

5.2.4.1 Preliminary in situ direct transesterification at 300 C in Parr reactor 

Preliminary reactions for this study were first done in the 450ml Parr® reactor 

using wet activated sludge from the WWTP in Tuscaloosa, AL until problems with 

significant heat loss that caused a 2 -3hr heat-up time, instigated the search for a new 

equipment set-up. 

The reactions were conducted in the 450 ml Parr® batch reactor with 20 g or 40 g 

of sludge (6.75% solids) reacted with 100 ml of methanol (i.e. and 74 ml/1 g and 37 ml/1 
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g methanol-to-solid ratios) at 300 °C for 6 hours. The pressure obtained in the reactor 

was approximately 2300 psi.  

5.2.4.2 Bligh & Dyer Method of Extracting lipids 

Four batches of Rhodotorula glutinis (RG) were grown and used over the duration 

of this study. The batches were made in February 2011, September 2011, January 2012 

and June 2012 and were prepared as described in Section 5.2.3.2. The February 2011 

batch was only slightly different because 80g/L of glucose was used instead of the 60g/L 

used in the remaining batches. To determine the initial lipid yield in the cells, a modified 

Bligh and Dyer extraction method similar to that in Section 5.2.3.3.2 was used for 

extraction on the unreacted, freeze-dried RG cells.  This was done by adding methanol, 

chloroform and water to get the chloroform - methanol - water volume proportion of 

1:2:0.8 for a monophasic extraction, followed by a biphasic extraction twice at the 

chloroform - methanol - water volume proportion of 2:2:1.8. Once the chloroform layer 

extract was evaporated to dryness at 45°C under a 15-psi stream of nitrogen using 

TurboVap LV (Caliper Life Sciences), the dry product was weighed to determine the 

gravimetric yield of lipids. It is important to note that this lipid yield is only an estimate 

of the lipids in the cells that were extracted by chloroform. Also, not all the lipids in this 

extract can be converted to biodiesel. The extract could include some non-saponifiable 

lipids that do not have ester linkages or phospholipids which cannot be fully converted to 

FAMEs. Their lipid yield results are shown in Section 5.3.2. 
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5.2.4.3 In situ direct transesterification and optimization between 275 °C - 325 C 
preliminary reactions in 46ml reactors using RG 

This initial optimization of FAME yields study was done using the February 2011 

RG batch. To simulate wet sludge conditions, water was added to the dry cells to attain a 

moisture content of 90% for all reactions. The wet cells were reacted with methanol by 

varying 3 optimization variables using a down-selection method as shown in Table 5.2: 

1. Methanol:solid ratios (v/w) of 15 ml:1g, 30 ml:1g, 45 ml:1g 

2. Temperatures of 275°C, 300°C, and 325°C 

3. Time at 0.5, 1, and 3 hours 

Table 5.2 Order of experimental reactions for initial optimization 

Reaction order Methanol:solid 
ratios (ml/g) 

15 

Temperature 
(°C) 

Time (hr) Substrate 

1 
300 1 RG 

30 300 1 RG 

300 1 RG 

2 

45 

30 275 1 RG 

30 300 1 RG 

30 325 1 

0.5 

1 

RG 

3 
30 300 RG 

30 300 RG 

30 300 RG 

4 30 300 

3 

3 Sludge 

Activated sludge that was obtained from a wastewater treatment plant in 

Tuscaloosa, AL was filtered, freeze-dried and also reacted at 90% moisture to compare 

FAME yields with those obtained from R. glutinis at the same reaction conditions.  

The reactions were run in triplicates, dropping in 3 reactors with the same 

reactants into the sand bath already at the temperature set point. The timing was started 

immediately after dropping the reactors into the sand bath and it initially was assumed 
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that they would heat up uniformly and quickly to the sand bath temperature. The FAME 

yield obtained was the basis for optimization. Additional experiments were also run using 

a different batch to compare FAME yields. 

5.2.4.4 Timed samples at 250 °C, 90% water content from 10 – 60 minutes 

Since the FAME yields obtained from the preliminary optimization reactions were 

not significantly different between the temperatures and times tested, timed samples at a 

lower temperature (250°C) were studied for shorter durations to examine the conversion 

of the initial triglycerides present in the R. glutinis cells to FAMEs and monitor other 

compounds such as diglycerides, and monoglycerides. Three reactors and the internal 

temperature probe reactor were charged with the same contents and the reactors dropped 

into the sand bath at the desired temperature. The samples were taken out at 10-minute 

intervals up to a maximum of 60 minutes starting when the reactors were dropped in 

without waiting for internal temperature to reach set point before starting timing. This 

was done so we could capture the FAME yield of the first few minutes of reaction. 

5.2.4.5 In situ transesterification yield at 60 C 

To estimate biodiesel yield and fatty acid profile using a different reaction 

method, Bligh-Dyer extraction was conducted on 0.2 g of freeze-dried RG cells and the 

extracts were treated with a more conventional method of acid transesterification of the 

lipid extracts at 60°C to produce FAMEs (Mondala et al. 2012). 

For the transesterification, two milliliters of a 2% (v/v) sulfuric acid in methanol 

was added to the lipid extract samples, vortex-mixed, and heated at 60°C in a water bath 

for 2 hours. The samples were cooled to room temperature and quenched with 5 ml of an 
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aqueous solution containing 3% (w/v) NaCHO3 and 5% (w/v) NaCl. FAMEs were 

extracted from the reaction mixture with two washings of 2 ml toluene containing 200 

ug/ml of 1,3-dichlorobenzene as the internal standard and 100 μg/ml of BHT as an 

antioxidant. The toluene extracts were dried over anhydrous sodium sulfate, diluted, 

analyzed and quantified using the Agilent 6890 Gas Chromatograph. 

5.2.4.6 Two-step in situ Hydrolysis and Supercritical Esterification 

Based on literature findings described in section 1.1.3, a two-step method of cell 

hydrolysis followed by esterification in supercritical methanol was designed. Minami and 

Saka had tested hydrolysis at 270 °C, (subcritical state of water, <374 °C), with 1:1 

volumetric ratio of triglyceride and water at pressure 7MPa,  and found that it took 60 

min to reach 90 wt% FFA yield (Minami and Saka 2006), those conditions were tested 

for hydrolysis. At this point, an internal temperature probe was added to a reactor in sand 

bath and was used in conjunction with a datalogger to monitor set-point equilibrating 

times. 

Water (1.8 ml) was added to 0.2 g of freeze-dried Rhodotorula glutinis for 90% 

moisture content (based on solids). The mixture was hydrolyzed at 270 C in a 46-ml 

tubular reactor placed in the heated fluidized sand bath for 30 minutes and 1 hr to assess 

the effect of reaction time on the fatty acid yield of hydrolysis. 

After hydrolysis, the reactor was cooled and 6 ml of methanol was added to the 

reactor, and subjected to the esterification step in supercritical methanol at 250 C for 20 

minutes. The hydrolysis and hydrolysis-esterification products were analyzed on the GC 

for fatty acid and FAME yields. 
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The proposed two-step method used in this study is slightly different from that 

done by Kusdiana and Saka in 3 ways: 1) the oil phase was not separated from the water 

phase in the filtrate from the hydrolysis product before reacting with supercritical 

methanol for esterification because the small amount made it more complex and we also 

wanted to avoid losing some of the fatty acids with the solids if filtered and discarded; 2) 

solids are used – cells with membranes, instead of plain oils; and 3) the solids are initially 

at high water content (90%) as the aim of this study was to evaluate esterification in the 

presence of high water content.  

Additional experiments were conducted to study the effect of temperature on the 

hydrolysis reactions. Hydrolysis was conducted using 0.2g RG and 1.8ml water at 150 °C 

and 200 °C for 30 minutes in triplicates. 

5.2.4.7 Further optimization 

To address the previous optimization study that did not give a result that was 

significantly different from other conditions, a second optimization study was conducted 

using RG that aimed for savings on energy consumption and methanol use by using a 

lower temperature range and lower methanol-to-solid ratios. Three levels of temperature 

(250°C, 265°C and 280 °C) and 3 levels of methanol-to-solid ratio (7.5ml/g, 15ml/g and 

30ml/g) were considered in triplicates, giving a total of 27 runs. A shorter reaction time 

of 20 minutes plus 10-minute heat-up time was used for all reactions. Table 5.3 shows the 

experimental design. 
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Table 5.3 Experimental runs for second optimization study 

Methanol:solid ratios (ml/g) Temperature (°C) 

7.5 
250 

250 

250 

15 
265 

265 

265 

30 
280 

280 

280 

Temperature control was ± 3 °C. Reaction conducted in triplicates, reaction time was 20 
minutes plus 10-minute heat-up time 

5.2.4.8 1-step direct transesterification kinetics at 280 °C on RG with 30ml/g 
methanol:solid ratio and 0% water 

The aim of this experiment was to determine the FAME yields in the absence of 

water and the rate constant of the reaction. This information is different from other rate 

constant data found in the literature because cells are involved instead of plain oil. The 

reactors were charged with 0.2g RG and 6ml methanol. For this reaction, the sand bath 

configuration was modified to allow 5 reactors to fit in with the temperature probe reactor 

by using a piece of air duct to keep sand from spilling out Figure 5.13.  Once the sand 

bath had reached the temperature set point, the 6 reactors were inserted, and the internal 

temperature monitored until it stabilized at the desired set point, time was recorded and 1 

reactor was taken out as the 0min sample. The remaining samples were taken out at 5, 10, 

15, and 20 minutes. Two reaction replicates were obtained. 
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Figure 5.13 Modified fluidized sand bath with air duct restraining sand loss 

5.2.4.9 1-step direct transesterification kinetics at 280 °C on RG at 30ml/g 
methanol:solid ratio and 90% water 

The aim of this experiment was to compare the yields at 90% water composition 

and the rate constant achieved on RG cells to those obtained in the absence of water. This 

reaction could also represent the 2-step in situ method happening at the same time. Using 

a similar configuration as in the above section, the reactors were charged with 0.2g RG, 

1.8ml water and 6ml methanol and reacted at 280 °C. Timed samples were taken out at 0, 

5, 10, 15, and 20 minutes. Two reaction replicates were obtained. 

5.2.4.10 Hydrolysis reaction kinetics on RG at 280 °C with 90% water 

The aim of this experiment was to determine the yield of fatty acids and the rate 

constant of the hydrolysis reaction. This illustrates how the hydrolysis could occur in the 

187 

https://5.2.4.10


www.manaraa.com

 

 

  

 

 

  

  

  

   

 

  

  

 

 

 

 

 

90% wet transesterification reaction if eliminating the concurrent transesterification, 

hydrolysis and esterification reactions taking place due to the presence of water. It allows 

the comparison of the hydrolysis reaction rate to the transesterification reaction rates at 

0% and 90% water composition at the same reaction temperature.  The reactors were 

charged with 0.2g RG and 1.8ml methanol and reacted at 280 °C. Timed samples were 

taken out at 0, 5, 10, 15, and 20 minutes. Two reaction replicates were obtained. 

5.2.5 Analytical Method 

5.2.5.1 Standard preparation and sample dilution/preparation for GC 

Standard and sample preparations for FAME and glyceride analysis were done 

using the same method discussed in section 3.2.7 in Chapter 3. Samples dissolved in a 

toluene diluents were analyzed using gas chromatography-mass spectrometry for 

compound identification. 

5.2.5.2 Gas Chromatography 

5.2.5.2.1 Gas Chromatograph for FAME analysis 

The concentrations and amounts of FAMEs in the Bligh-Dyer extract were 

analyzed and quantitated using the Agilent GC 6890N gas chromatograph equipped with 

a flame ionization detector (GC-FID) (Agilent, Santa Clara, CA, USA. Approximately 4 

mg of crude extract sample was dissolved in 1ml standard solution (toluene diluent 

containing 100 µg/ml butylated hydroxytoluene (BHT) and 200 µg/ml of 1,3-

dichlorobenzene (DCB), which was the internal standard for GC analysis) and filtered 

using a 0.45 μm filter attached to a syringe. One µL of this solution was injected in 

splitless mode on an Agilent 6890 Gas Chromatograph (Agilent Technologies, Santa 
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Clara, CA) at a constant injector temperature of 260 °C. The GC (Figure 5.14) was 

equipped with a 30 m × 0.25 mm ID Restek 11023 Stabilwax DA Capillary Column 

(Restek, Bellefonte, PA) having a 0.25-m film thickness. The GC oven was 

programmed at an initial temperature of 50 °C, held for 2 min, ramped up to 250 °C at 10 

°C min-1, and held for 18 min, giving a total of 40 min analysis time.  A flame ionization 

detector (FID) operating at 260°C and using helium carrier gas (14 psi, 53.5 mL/min flow 

rate) was used to detect the FAMES. The instrument was calibrated using a standard 

FAME mixture containing 14 FAMEs from C8 – C24 (Sigma-Aldrich, St. Louis, MO). 

The total FAME concentration obtained was used to estimate the total biodiesel yield 

from each reactor set. 

Figure 5.14 Agilent 6890 series GC system with DA Stabilwax column for quantifying 
FAMEs and FFA Initial and final temperatures of 50 °C and 250 °C 

5.2.5.2.2 High Temperature Varian Gas Chromatograph for glyceride analysis 

The high temp GC was used to analyze the glyceride content in the reaction 

products for quantification. The equipment used was the Varian 3600 GC (Figure 5.15) 

equipped with a flame ionization detector (FID). The column used was the ZB-5HT 
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Inferno (Phenomenex, Torrance, CA, USA) having dimensions of 15m, internal 

diameter of 0.32mm and film thickness of 0.10m, and 400 C maximum temperature. 

The initial and final injector temperatures will be 50°C and 380°C respectively and the 

FID temperature of 380°C in accordance with the ASTM Method D 6584 (ASTM). 

(ASTM)(ASTM)(ASTM)(ASTM)(ASTM)(ASTM)The GC oven was programmed at an 

initial temperature of 50°C for 1 minute, then ramped to 180°C at 15°C/minute, to 230°C 

at 7°C/minute, and then to 370°C/minute at 10°C/minute was held constant at 380°C for 

5 minutes. 

Figure 5.15 High temperature GC 

5.2.5.3 GCMS 

Gas Chromatography-Mass Spectrometry (GCMS) was used to identify the 

FAME compounds. An Agilent 5975 GCMS equipment (Figure 5.16) was used with a 

Restek Rxi-5SiL MS column. Initial and final temperatures of the oven were 50 °C and 

320 °C. An Electron Ionization (EI) scan was run from 50 – 450 m/z. 
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Figure 5.16 Agilent 5975 GCMS with Mass Selective Detector (MSD) 

5.2.5.4 Calculations 

FAME yields were calculated as: 

mass of FAMEs in product 
𝐹𝐴𝑀𝐸 𝑦𝑖𝑒𝑙𝑑 (%) = ∗ 100% (5.1) 

𝑚𝑎𝑠𝑠 𝑜𝑓 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑒𝑙𝑙𝑠 

5.3 Results and Discussion 

5.3.1 Preliminary in situ direct transesterification at 300 C in Parr reactor 

The yields on these reactions were relatively high after 6 hours of reaction using 

sludge of 6.75% solids. However, since the reactions were not very reproducible when 

duplicate reactions were conducted; these results only give a rough estimate of the 

distribution of FAMEs in the liquid and solid product. The results show an average 

FAME (biodiesel) yield of 7.8 % (based on initial solids) was obtained after analyzing 

the liquid product. The FAME yield on the leftover solid product was deemed negligible 

as only ~0.05 - 0.1% so there is no significant FAME loss by discarding the solids. 

Analysis of the product by Gas Chromatography-Mass Spectrometry (GCMS) showed 
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the FAME profile obtained from the sludge transesterification product in Table 5.4. As 

expected, the predominant FAMEs in sludge were C16:0, C16:1, C18:0, and C18:1. 

Table 5.4 FAME profile on sludge transesterification product 

Methanol: Solids Ratio 74 ml:1 g 37 ml:1 g 

% Yield of  Methyl Palmitoleate (C16:1) 2.06 2.13 

% Yield of Methyl Palmitate (C16:0) 2.32 2.51 

% Yield of Methyl Oleate (C18:1) 2.23 1.84 

% Yield of Methyl Stearate (C18:0) 1.05 1.42 

Overall Yield from Sludge solids (% wt of solids) 7.66 ± 1.31 7.90 ± 3.94 

Comparing that FAME yield with other conventional methods as seen in Table 

5.5 below, we see that the supercritical methanol method produces a higher yield without 

the addition of catalyst but at a much higher temperature and pressure. 
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Table 5.5 Comparison of supercritical methanol reaction with other methods 

Dried Sludge 

(Revellame et al. 2010) 

Wet Sludge (Revellame 

et al. 2011) 

Supercritical 

Methanol 

(This study) 

% Water (g/g solid) ~ 5 ~ 84.5 ~ 93 

Methanol Loading (ml/g solid) 25/1 30/1 37/1, 74/1 

Catalyst Loading (% vol) 4 10 -

Reaction Temperature (°C) 55 75 300 

Reaction Pressure (atm) 1 1 157 

% FAME Yield  (g/g solid) 4.79 ± 0.02 3.93 ± 0.15 7.78 ± 4.15 

Although the 74ml/g reaction appeared to have a high yield, that reaction needs to 

be confirmed as reproducible in a different set-up that has more consistent and minimum 

heat-up times. Also, Rhodotorula glutinis (RG) was used as a more consistent substrate 

that also reduced the variance in the sludge substrate composition. 

5.3.2 Bligh & Dyer Method of Extracting lipids in Rhodotorula glutinis (RG) 

The gravimetric lipid yields from the modified Bligh-Dyer extract for the 4 RG 

batches used in this study are listed in Table 5.6 below. All batches had similar yields 

with an average of 37 %. 
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Table 5.6 Table showing variation in lipid yield between batches 

February 
2011 

September 
2011 

January 
2012 

June 
2012 

Lipid Yield (% wt of initial cell weight) 35 36 35 41 

Derivatization (Section 5.2.5.1) and analysis of the Bligh-Dyer extract of RG 

indicated only about 20% of the Bligh-Dyer extract was triglycerides, leaving 80% of the 

extract as other compounds such as phospholipids. 

5.3.3 In situ direct transesterification and optimization between 275 °C - 325 C 

The results of the optimization reactions conducted in 46ml reactors using RG are 

shown in Figure 5.17 - Figure 5.19. The study to determine the best reaction conditions 

for producing the highest FAME yields efficiently did not yield an optimum set of 

conditions at this point. For all the varying conditions (methanol:solid ratio, temperature, 

and time), the FAME yields increased as each variable increased but were not 

significantly different within the ranges tested. The fact that the reaction timing was 

started upon dropping the reactors into the sand bath did not affect the results because all 

reactions in this set were treated the same way and the absence of an optimum indicated 

that would not have made a significant difference. 
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Figure 5.17 Effect of Methanol:Solids ratio on the FAMEs yield for supercritical 
transesterification of Rhodotorula glutinis 

300 °C, 1 hour, 90% water 

Figure 5.18 Effect of reaction temperature on the FAMEs yield for supercritical 
transesterification of Rhodotorula glutinis 

Methanol:Solids ratio = 30 ml/g, 1 hour, 90% water 
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Figure 5.19 Effect of reaction time on the FAMEs yield for supercritical 
transesterification of Rhodotorula glutinis 

Methanol:Solids ratio = 30 ml/g, 300 °C, 90% water 

It was also observed that the highest yield (21%) after 3 hours of reaction time 

was still not at the estimated maximum original lipid yield obtained from Bligh-Dyer 

extraction on unreacted R. glutinis cells which was approximately 35% cell dry weight 

(gravimetric).  However, there are non-saponifiable lipids (lipids that cannot be converted 

to biodiesel) in the 35% estimate, which prevent the complete conversion of the lipid 

extract from occurring. The 3 predominant FAMEs that were observed - methyl 

palmitate, oleate, and stearate were also reported by Zhang et al. (Zhang et al. 2011). 

When sludge and R. glutinis were compared at the same reaction conditions of 

300 °C, 30 ml methanol:1 g cells, 3 hours and 90% water, the sludge produced a lower 

analytical FAME yield of 2.24 ± 0.4% than the R. glutinis at 20.71 ± 5.8% (Table 5.7). 

Although relatively low, the sludge FAME yield can still be improved by growing the 

cells under high carbon-to-nitrogen ratios to enhance the initial lipids present in the cells 
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(Mondala et al. 2012). In the study by Mondala et al., they increased the lipid content of 

sludge from 11 % (raw activated sludge) to 18% (enhanced activated sludge) by 

cultivating at high C:N ratios. Their FAME yields also increased from 3 % to 10 % after 

sludge was enhanced. Furthermore, the transesterification condition used were only at 60 

°C and not supercritical conditions, which indicates the possibility for higher yields. 

Table 5.7 Comparison of FAME yields for transesterification of Rhodotorula glutinis 
and activated sewage sludge with supercritical methanol 

Reaction Conditions 

300 °C, 30 ml:1 g, 3 hours, 
90% water 

Sludge Rhodotorula glutinis 

FAME Yield (%) 2.24 ± 0.4 20.71 ± 5.8 

5.3.3.1 Experiments to compare FAME yields between the batches: 

Since the February 2011 batch was used for these results, a similar study for 

comparison at 2 reaction conditions was done on the September 2011 batch at the same 

reaction conditions of 1 hour at 275 °C and 300 °C to determine if they gave similar 

yields. The same reactant mix of 0.2g RG, 6ml methanol, and 1.8ml water (i.e. 30ml/g 

methanol:solid ratio and 90% wet solids) was reacted and results are shown  in Table 5.8. 
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Table 5.8 Experiments to compare FAME yields and effect of reaction times using 
September 2011 batch 

275 °C 300 °C 

15 min 5.2 ± 0.9% 

1 hr 32 ± 1.7% (15%)* 35.2 ± 5.3% (17%)* 

5 hr 28.5 ± 4.4% 

*Previous values from February 2011 batch are in parentheses 

Overall, the September 2011 RG batch had higher FAME yields than the first 

February 2011 batch at the same 1 hour supercritical reaction conditions. This may have 

been due to the slight difference in the RG yeast preparation compared to the remaining 3 

batches. 

5.3.3.2 Effect of Reaction Time 

A 15 min reaction was conducted to evaluate how far the reaction proceeded in a 

very short period of time. The 15 minutes was timed immediately after the reactors were 

placed in the sand bath. The 5.2 ± 0.9 % yield obtained indicates how fast the FAMEs are 

produced during the heating time before the system equilibrates to the temperature set 

point. Compared with literature data that has ~ 80% conversion in 15 minutes for a 

smaller system, the difference in these results lies in the fact that cells with cell 

membranes instead of plain oil are involved here and the cells also have 90% moisture 

content that could affect the conversion rate. 

A 5 hr reaction was also run to see if a longer reaction time would produce a 

FAME yield significantly different from the 1 hr runs enough to justify the extra energy 

expense. However, reacting for 5 hours did not increase FAME yield but decreased it 
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slightly. This yield was lower than expected given the high yields at shorter reaction 

times.  This could be due to FAME degradation at the high temperature (Imahara et al. 

2008) and also side reactions like hydrolysis of triglycerides to fatty acids and reverse 

esterification of those fatty acids occurring due to the presence of water. 

Since no optimum was observed in this initial study and the yield based on 

varying reaction times were not significantly different, it was decided that a shorter 

reaction time would be economically beneficial to the process by saving energy.  The 

next study was designed to study the production of FAMEs over a shorter time period. 

Furthermore, triglycerides, diglycerides and monoglycerides were quantitated to get a 

better picture of the reaction progress. 

5.3.4 Timed results at 250 °C, 90% water content from 10 – 60 minutes 

Previous experiments varying reaction time from 30min to 1.5hr for 0.2g of RG 

with 90% water content at 300°C showed that FAME yields (based on initial 0.2g of 

cells) were not significantly different, as seen in Figure 5.19. 

The results of additional experiments to study conversion of glycerides and 

generation of FAMEs in a lower time range of 1-hour total reaction time at 10-minute 

intervals are shown in Figure 5.20. Since the internal temperature probe could take 12 

minutes to settle at the temperature set point for a given reaction, the reaction time for 

these tests was started immediately after dropping the reactors into the sand bath to not 

miss the conversions that take place in the first couple minutes of heating. This helped 

investigate if there were any significant changes in FAME yield at a lower reaction time 

period (between 0 and 1 hour as seen in Figure 5.20) and to investigate the concentration 

changes in glycerides and FAMEs as reaction time progressed. A reaction temperature of 
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250°C was chosen to investigate the FAME yield at a lower temperature. The results 

achieved at 250°C (16% after 1 hr) were comparable to the yields between 275 °C and 

325°C, which could help reduce costs. However, the highest FAME yield was not 

achieved after 60 minutes but after 30 minutes (17%). 

Figure 5.20 Product profiles at different reaction times for supercritical 
transesterification of Rhodotorula glutinis 

Methanol:Solids ratio = 30 ml/g, 250 °C, 90% water 

In the first 30 minutes, the trends on the 4 components are as expected with 

triglyceride amounts decreasing as it is being converted to diglycerides and 

monoglycerides, and FAMEs increasing as it is being produced from the glycerides as 

seen in the mechanism in Figure 5.21. 
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MeOHTG DG MeCOOR

MeOHDG MG MeCOOR

MeOHMG Glycerol MeCOOR+
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+
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Figure 5.21 The mechanism of transesterification of triglyceride. 

After the 30-minute sample, the glyceride amounts seem to stabilize at the 40 and 

50 minute times although the triglyceride amount still decreases by the 60 minute sample 

and the FAME increase by the 60 minute time. These results between the 40 – 60 minute 

time periods could be due to the conversion of triglycerides to fatty acids and fatty acids 

converting to FAMEs. The triglyceride would be able to produce a fatty acid molecule if 

hydrolysis is concurrently taking place especially with the presence of water in these 

reactions. These were only run in duplicates as a preliminary test before the kinetic 

reactions in Sections 5.3.8 and 5.3.9. 

Based on the glyceride consumption and FAME production, it was determined 

that the reaction time does not need to be higher than 30 minutes in further reactions 

since a higher FAME yield was not obtained after 30 minutes. Thus, for studying 

kinetics, it was decided to have sample points in the first 30 minutes. The time taken for 

the internal temperature probe to reach the set point (heat-up time) was ~ 13 minutes. 
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5.3.5 In situ transesterification yield at 60 C 

The yield of FAMEs from this transesterification of RG lipid extracts was 19% 

based on the initial 0.2g of freeze-dried RG cells used and 59% based on initial lipid 

extract mass. In 2 hours, transesterification of lipid extracts with added catalyst and 0% 

water content generated 19% FAME yield, while in 10 minutes, transesterification of 

90% wet RG with supercritical methanol produced 10% FAME yield (cell basis) as seen 

in Figure 5.20 and reached 17 % FAME yield in 30 minutes. At this point, the 

supercritical methanol process still has the promising advantages of: saving cost in 

catalyst usage and separation, reducing reaction time, high water tolerance and avoids the 

very expensive processing steps of removing water and extracting lipids before sludge oil 

can be reacted with catalyst to produce biodiesel. 

5.3.6 Two-step in situ Hydrolysis and Supercritical Esterification 

In Figure 5.22, the sample ‘Before hydrolysis’ represents the lipid extract of the 

unreacted RG cells and it indicates that there is a high amount of triglycerides initially 

that is drastically reduced in the other samples that were hydrolyzed proving that the 

triglycerides were converted to fatty acids as expected. We found that the yield in fatty 

acid if hydrolyzing at 270 C for 30 minutes or 1 hour was very close. The fatty acid 

yields (based on initial cell weight) of hydrolysis after the 30 min and 60 min reaction 

times were 27.1 and 26.5% respectively which indicated that it was not necessary to 

hydrolyze for 60 minutes to get a higher fatty acid yield.  It was also observed that only 

18% of the fatty acids formed were converted to FAMEs with a yield of 15% when 

hydrolysis was followed by esterification in supercritical methanol at 250 °C for 20 

minutes, indicating that the FAME yield from the 2-step reaction could be increased 
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significantly. Based on these results, however, the 2-step process is comparable to the 1-

step process in FAME yields.   

Kusdiana and Saka’s 2-step study showed that the 2-step method provided much 

higher yields than the 1-step for the same reaction time (Kusdiana and Saka 2004b). 

Reaction times for the 2-step method were obtained by summing the times for hydrolysis 

and esterification. For example, after 40 min reaction time at 270 C, their 1-step method 

had a FAME yield of ~70% while their 2- step method had a yield of at least 95%. 

The numbers obtained in this study cannot be compared to those in Kusdiana and 

Saka’s study as they have different bases e.g. reaction time and water removal. Their 

studies suggest the reason the yield increase was not seen with the 2-step method is 

because: 1) our 1-step method already contained water that would have simultaneously 

hydrolyzed the triglycerides to fatty acids, thus performing reversible, supercritical 

methanol transesterification and esterification concurrently and producing high yields 

that were similar to the 2-step method. This would not happen in the absence of water; 2) 

water and glycerol were not separated out after hydrolysis in this study, which would 

have increased the yield. However, the scope of this study was to evaluate the effect of 

high water content on FAME yields in both methods. For future work, separating oil and 

aqueous phases before esterification could give the advantage of higher FAME yields and 

reduced glycerol production since glycerol is removed with the aqueous phase prior to 

methyl esterification (Minami & Saka, 2006). 
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Figure 5.22 Product profiles for the hydrolysis and esterification 

250 °C, 90% water 

The predominant fatty acids obtained from hydrolysis were palmitic, oleic, stearic 

and linoleic acids and were identified by matches with model FAMEs analyzed by the 

GC. Figure 5.23 shows pictures of the RG cells before and after hydrolysis. 
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a) b) 

Figure 5.23 a) Freeze-dried Rhodotorula glutinis (RG) cells, b) residue of hydrolyzed 
RG 

 

  

  

  

  

  

 

 

   

 

  

  

5.3.6.2 Effect of change in hydrolysis temperature 

The fatty acid yields from hydrolysis of 90% wet RG cells for 30 min at 150 °C 

and 200 °C were 31.9 % and 26 % respectively. These were very similar to the fatty acid 

yield from hydrolysis at 270 °C (27%), which indicates that hydrolysis can be done at a 

lower temperature and save on energy costs for the 2 - step process. Interestingly, this 

was an unexpected trend especially since Kusdiana and Saka had the fatty acid yield 

increase by ~ 35% as temperature was increased from 255 C to 270 °C with a hydrolysis 

reaction time of 20 min (Kusdiana and Saka 2004b). This result can be attributed to 

system differences such as: water ratio, reaction pressure and the presence of cell 

membranes. 

Although the 2-step process produces high yields, the large scale process could be 

a little more complicated than a single-step process. The process will require high-

pressure reactors that could connect with a high-pressure water-glycerol-fatty acid phase 

separator (if increasing yield by removing aqueous phase); and the glycerol-water stream 
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which is still contaminated by fatty acids will require more separation units that will only 

consume more energy if distillation columns are used for example (Ngamprasertsith and 

Sawangkeaw 2011). 

5.3.7 Further optimization of the 1-step process at 90% water composition 

5.3.7.1 Statistical Analysis and Regression 

The statistical analyses were on the yields obtained from the optimization study 

were done using SAS® software*, a statistical analysis software package. The software’s 

ADX interface was used for generating response surface plots, numerical optimization, 

and for data analyses and presentation. Regression analyses were done at a significance 

level of 0.05. 

In combination with partial linear regression, the SAS ADX interface was used to 

determine the main and interactive effects of the factors on the response. A fourth order 

response surface model was used to relate the experimental response, Y, to the factors. 

The model is represented by: 

2 2 2 2 2 2Y = β0 + β1X1 + β2X2 + β11X1 + β22X2 + β12X1X2 + β112X1 X2 + β122X1X2 + β1122X1 X2 + ε (5.2) 

Equation 5.2 represents the full response surface model (master model) including 

both the significant and insignificant effects. The R2 fit at the 95% confidence level 

obtained was 0.88 which indicates good agreement between the model and experimental 

data. A fitted surface response model (predictive model) based only on significant factor 

effects was also obtained with an R2 fit of 0.84: 

2 2 2Y = β0 + β1X1 + β2X2 + β12X1X2 + β122X1X2 + β1122X1 X2 + ε (5.3) 
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______________________________ 

The response surface and contour plots obtained from the SAS ® analysis are in 

Figure 5.24.  

*SAS and all other SAS Institute Inc. product or service names are registered trademarks 

or trademarks of SAS Institute Inc. in the U.S.A. and other countries. ® indicates U.S.A. 

registration. 

a) b) 

Figure 5.24 a) RSM plot, and b) Contour plot from SAS® optimization 

An ANOVA table (Figure 5.25) obtained using the SAS® software was used to 

identify significant effects. 
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Figure 5.25 ANOVA table 

All the factors except the quadratic factors of temperature and methanol were 

found to be statistically significant at a significance level of 0.05, and the uncoded 

predictive model was found to be with R2 of 0.8 and statistically insignificant lack of fit 

(p = 0.1) which indicates that the predictive model is adequate. The optimum condition 

for FAME production from RG was obtained at the combination of 280 °C and 30ml/g 

methanol-to-solid ratio, producing a FAME yield of 21.5%. This condition is suitable for 

our needs as Xin et al. suggests that the favorable reaction temperature used in 

supercritical methanol processes should be less than 300 °C to avoid degradation of the 

methyl esters (Xin et al. 2008). 

The coded model was expressed as: 

FAMEYLD = 14.8 + 7.5×TEMP + 3.7×MSRATIO + 2.4×TEMP×MSRATIO – 
(5.4) 

3.4×TEMP×TEMP×MSRATIO - 4.4×TEMP×MSRATIO×MSRATIO 

The SAS ® generated estimates for the coded model are shown in Figure 5.26. 

Figure 5.27 shows the numerical optimization values generated using the model and 

Table 5.9 shows the experimental runs and yields for comparison. 
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Figure 5.26 SAS ® generated estimates for coded model 

Figure 5.27 SAS ® generated numerical optimization result 
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Table 5.9 Experimental runs and yields 

RUNTEMPMSRATIOFAMEYLD 

1 250 7.5 14.675 

2 250 7.5 13.509 

3 250 7.5 13.09 

4 250 15 7.19 

5 250 15 6.751 

6 250 15 7.143 

7 250 30 10.611 

8 250 30 7.795 

9 250 30 9.324 

10 265 7.5 14.197 

11 265 7.5 12.425 

12 265 7.5 11.603 

13 265 15 15.159 

14 265 15 12.267 

15 265 15 13.351 

16 265 30 17.4 

18 265 30 20 

28 265 30 23 

19 280 7.5 14.905 

20 280 7.5 14.181 

21 280 7.5 16.77 

22 280 15 20.714 

23 280 15 17.423 

24 280 15 20.466 

25 280 30 16.266 

26 280 30 24.127 

27 280 30 20.275 

5.3.8 1-step direct transesterification at 280 °C on RG with sample times 0, 5, 10, 
15, and 20 minutes without water 

Many authors in the literature show that the kinetics of supercritical 

transesterification typically follows the first-order rate law with respect to triglyceride 

concentration (Kusdiana and Saka 2001, He et al. 2007) due to the high methanol:oil ratio 

in the reaction. We hypothesize that our reaction would follow a similar model due to the 
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high 654:1 molar ratio of methanol to oil present. The kinetic data obtained was fitted to 

a first order model based on unesterified compounds at any given time (uME) similar to a 

method used by supercritical methanol researchers (Kusdiana and Saka 2001, He et al. 

2007). The unesterified compounds refer to the triglycerides (TG), diglycerides (DG), 

monoglycerides (MG), and unreacted fatty acids (FA) present at any given time. We 

determined this would be more accurate for our system since there could potentially be a 

significant amount of fatty acids produced from concurrent hydrolysis of the 

triglycerides. The rate constant was determined based on decreased amount of the 

unesterified compounds starting with the expression: 

[𝑢𝑀𝐸] 
𝑅𝑎𝑡𝑒 = −𝑑 (5.5) 

𝑑𝑡 

which can be written as 

[𝑢𝑀𝐸] 
−𝑑 = 𝑘[𝑢𝑀𝐸] (5.6)

𝑑𝑡 

where [uME] is the concentration of the species excluding the methyl esters and glycerol 

product. Integrating, 

𝑙𝑛[𝑢𝑀𝐸, 0] − 𝑙𝑛[𝑢𝑀𝐸, 𝑡] = 𝑘𝑡 (5.7) 

Rearranging, 

[𝑢𝑀𝐸,𝑡]
−ln( ) = 𝑘𝑡 (5.8)

[𝑢𝑀𝐸,0] 

where uME,0 is the initial species concentration at time zero, and uME,t is the 

concentration of the species at time t. The apparent rate constant, k, was obtained by the 

linear fit of Equation 5.8. 
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Figure 5.28 First order calculation for 0% transesterification 

Since there was a 8 – 10 minute internal temperature equilibrating time when the 

reactors were first dropped in, which made it difficult to capture the initial changes in the 

reaction, the analysis was made using differences between the remaining time points. The 

rate constant obtained from the calculation in Figure 5.28 was 5.4 × 10-4 s-1, which 

corresponds well with literature data. Irreversible first order reaction was used by these 

authors and they had similar rate constants of ~7.0 × 10-4 s-1. Kusdiana and Saka used 

rapeseed oil at 270 °C and 12 MPa while He et al. used soybean oil at 270 °C and 

28MPa. Literature shows that a rate constant of 3 × 10-4 s-1 was obtained at 230 °C for 

the noncatalytic transesterification of soybean oil (Dasari et al. 2003). The difference 

between the RG rate constant obtained of 5.4 × 10-4 s-1 and these literature values could 

be indicative of the effect of cell walls present, which may result in a mass transfer 

resistance prior to reaction. 
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5.3.9 1-step direct transesterification at 280 °C on RG at 30ml/g methanol:solid 
ratio and 90% water with sample times 0, 5, 10, 15, and 20 minutes 

Figure 5.29 First order calculation for 90% transesterification 

Using a similar approach as above, the rate constant obtained was 2.5 × 10-4 s-1 as 

obtained from the slope in Figure 5.29. The rate decreased by ~ 50%. 

There are 4 major reactions that could be occuring in this system: 

1. Forward reaction on transesterification of lipids 

2. Hydrolysis of lipids producing FFAs 

3. Esterification of FFAs 

4. Reverse esterification reaction consuming FAMES and producing FFAs 

The 50% decrease in rate constant indicates that these are the predominant 

reactions expected, based on the high methanol and water content. 

5.3.10 Hydrolysis kinetics on RG at best temperature 280 °C at 0, 5, 10, 15, and 20 
minutes 

The rate constant of 2.15 x 10-3 s-1 obtained from Figure 5.30 is very fast 

compared to the transesterification reaction and indicates strong dominance of the 
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hydrolysis reaction (instead of transesterification) occuring with in situ water during the 

90% wet transesterification reaction.  It also illustrates that the 2-step method can work in 

absence of water and can produce higher yields of FAMEs since the production of fatty 

acids will be significantly faster. 

Figure 5.30 First order calculation for 90% water hydrolysis reaction 

5.4 Conclusions 

Two different reaction set-ups were used for the 1-step direct transesterification 

method: the stirred 450-ml Parr reactor gave an average FAME yield of 7% on sludge, 

while the smaller 46-ml batch reactors gave a 2.2% FAME yield. When compared at 

same conditions of 300 °C, 30 ml: 1 g, 3 hours and 90% water, sludge produced a lower 

yield of 2.24 ± 0.4% than Rhodotorula glutinis at 20.71 ± 5.8%. The FAME yield on the 

R. glutinis at supercritical conditions was very promising considering that as high as 60% 

of the original lipid content (35% cell dry weight) was converted to biodiesel at 90% 

water and no catalyst. Although, the FAME yield on the sludge reaction compared to the 

R. glutinis was significantly lower, it could be optimized by growing sludge under high 

214 



www.manaraa.com

 

 

  

 

 

 

 

 

  

 

   

  

  

 

  

 

 

 

carbon:nitrogen ratios. Regardless of the sludge source, as long as there is secondary 

sludge, the microbes can be fed present to increase the oil content. 

Optimum condition for 1-step direct transesterification on the yeast at 90% water 

content is 280 °C with 30ml/g methanol:solid ratio and FAME yield of 21.5%. There is 

an opportunity for lower energy and methanol use to make this more economical without 

compromising significantly on yield. 

The 2 hour in situ transesterification at 60°C of the Bligh & Dyer extract from the 

same 0.2g mass of RG cells used produced 19 % in FAME yield while the FAME yield 

obtained from 30 minutes of 250°C reaction with supercritical methanol was 17% (based 

on initial 0.2g of dry RG cells). At this point, the supercritical methanol process still has 

the promising advantages of: saving cost in catalyst usage and separation, reducing 

reaction time, avoiding the costly extraction process of drying down water and extracting 

lipids before sludge oil can be reacted to produce biodiesel. 

From the comparison made of the 1-step and 2-step method at similar reaction 

conditions, both methods were comparable at 17% FAME yield for the 1-step reaction 

and 15% FAME yield for the 2-step method and are promising for use with wet sludge as 

feedstock. The two-step method did not produce a significantly higher amount of FAMEs 

at the reaction conditions tested, but still had a significant amount of fatty acids that were 

not converted. The kinetics from these systems showed that hydrolysis was faster and 

thus was occurring in the 90% wet 1-step reaction. Both have the potential for similar 

high yield and it could be more profitable to use the 1-step method if the same high 

temperature will be used in both cases, as the 2-step method could require more energy. 

Thus, depending on the process size, it could still be profitable to use the 1-step method 
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rather than expend the energy to reach supercritical methanol twice. If taking the 2-step 

route, separating oil and aqueous phases before esterification could give the advantage of 

higher FAME yields and reduced glycerol production since glycerol is removed with the 

aqueous phase prior to methyl esterification. The result of the economic analysis 

demonstrates which method is better for a particular application, but both methods show 

that activated sludge could be potential feedstock for biodiesel production. 
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CHAPTER VI 

ENGINEERING SIGNIFICANCE 

6.1 Introduction 

This study has demonstrated that activated sludge is a high-potential feedstock for 

biodiesel production especially since the lipid content of the microorganisms that 

comprise it can be enhanced. The supercritical methanol process showed potential of 

reducing overall production costs by reducing drying costs. Mondala et al. demonstrated 

that 307, 000 gallons of biodiesel could be produced annually at a cost of $3.23/gallon 

using activated sludge as a feedstock, based on processing of approximately 30 million 

gallons of wastewater/day. However, 53% of that cost was attributed to drying costs 

(Mondala et al. 2009). 

Chapter 5 demonstrated that 2 methods: the 1-Step and 2-Step processes, can be 

used efficiently for biodiesel production while tolerating water content, and the economic 

analysis is discussed in Section 6.2 below.  

6.2 Economic Analysis of 1-Step and 2-Step processes 

This work was done for a plant that could process 30 million gallons of 

wastewater per day, based on the annual treatment capacity of the wastewater treatment 

plant in Tuscaloosa, AL (Mondala et al. 2009) and produce 140, 000 kg of influent sludge 

solids per day.  The biodiesel production rate based on the influent sludge solids rate was 

220 



www.manaraa.com

 

 

  

 

 

 

 

  

  

 

  

  

4260 gallons/day for both the 1- and 2-step processes. This was done assuming that 10% 

of the entering sludge solids produced in the wastewater was saponifiable lipids that were 

fully converted to FAMEs (biodiesel). Operating time was assumed to be 8000 hr in a 

year (~333 days).  The process simulation software, SuperPro Designer v6.0 (Intelligen 

1991) was used for all costing except for those of the PFR reactors which were calculated 

using the costing model for a pressurized vessel (Peters et al. 2003). Additional costing 

references are included in the Appendices. 

Table 6.1 illustrates the determination of the incoming sludge solids flow rate. 

This assumed a total solids concentration of 10,000 mg/L, a total BOD5 removal of 95% 

from the wastewater treatment steps was estimated. The total sludge produced was 

calculated using a ratio of 0.65 kg of sludge produced/kg BOD5 removed (Rittmann and 

McCarty 2001). It was assumed that 20% of the sludge is wasted and this waste stream is 

used as the wet sludge feedstock to the processes. 

221 



www.manaraa.com

 

 

  
 

  
  

 
 

   
 

 

    
  

 
 

 

   

     
 

 

    

     

    

     
  

 

       
  

 

 

  

 

  

  

  

 

 

Table 6.1 Calculation of sludge produced from 3 ×107 million gallons/day WWTP at 
Tuscaloosa, AL 

Daily 
Influent flow rate, daily WW capapcity in Tuscaloosa plant, 
gallons/day 

3.00×107 

Assumed concentration of solids in influent wastewater, 
mg/L 

10000 

Mass of Solids in influent WW, kg/day 1.14×106 

BOD5 removal (95%), kg/day 1.08×106 

Sludge produced (0.65kg sludge produced/kg BOD5 
removed), kg/day 

7.01×105 

Amount of sludge wasted (20% of sludge produced), kg/day 1.40×105 

Incoming Mass flowrate of sludge solids into process 
(Wasted), kg/day 

1.40×105 

Incoming Mass flowrate of wet sludge, kg/day 1.40×106 

Actual % of solids in sludge wastewater 10 

Methanol:solids ratio, ml/g 30 

Incoming methanol flowrate needed for above kg of 
solids/day, in gal/day: 

1.11×106 

Incoming methanol flowrate needed for above kg of 
solids/day, in kg/day: 

3.32×106 

6.2.1 The 1-step process 

A schematic for the 1-step process is shown in Figure 6.1. It was assumed that the 

wastewater sludge was obtained free from a wastewater treatment plant near the biodiesel 

production plant, neglecting transportation costs. The wet sludge and methanol streams 

were combined via a mixer after preheating them to 95 °C and 60°C respectively. These 

were reacted in a stoichiometric plug flow reactor (PFR) at the optimal reaction condition 

obtained from the experimental study in Chapter 5: temperature of 280 °C and 

methanol:solid ratio of 30ml/g for the base case. A residence time of 60 minutes was 

utilized and pressure of 14 MPa was assumed from data in He et al. (He et al. 2007). 

The stoichiometry used in the kinetic PFR was: 
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78 Sludge + 3 Methanol  3 FAME + 1 Glycerol + 2.27sludge remnant (6.1) 

Sludge was represented by the empirical formula C5H7O2N (Revellame et al. 

2012). The stoichiometry was calculated assuming that 78 moles of sludge (113 g/mol 

molecular weight) were equivalent to 1 mole of saponifiable triglyceride which was 

assumed to be triolein (885g/mol molecular weight). FAME was represented by methyl 

oleate (296.5 g/mol molecular weight). The sludge remnant (C138H167O70N39) was added 

to balance the stoichiometric reaction and was assumed to have a molecular weight of ~ 

3489 g/mol. 

The PFR product was run through a phase separation device, where it was 

assumed that 90% of the methanol and water in the product stream exit as the top 

component (since they exist as vapor at 280 °C). This top component is further separated 

using a distillation column (C-103). The remaining product stream from the reactor exits 

through the bottom stream and is filtered using 3 microfiltration systems, and separated in 

a second distillation column (C-101) where methanol is removed for additional recycling. 

The bottom stream of C-101 was routed to a distillation column to purify the FAME 

(diesel) product. Actual FAME produced was 4260 gallons per day, assuming full 

conversion of 10% of sludge solids, and neglecting process losses (Table 6.2). 
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Table 6.2 Calculation of biodiesel yield from 1-step process 

Incoming hourly rate of sludge solids, kg/h 5843 

10% of sludge is triglyceride (TG) that is converted to fame, kg/h 584 

1 mole of  triglyceride (TG), g/mol 885 

Molar flowrate of TG(in sludge), mol/h 660 

Molar rate of FAME produced (Since 1 mol TG = 3 mol FAME), mol/hr 1981 

Mass rate of FAME produced (Since 1 mol TG = 3 mol FAME), kg/hr 587 

Yearly mass production rate of biodiesel, kg/yr 4.70×106 

Yearly volume production rate of biodiesel, gal/yr 1.42×106 

Daily volume production rate of biodiesel, gal/day 4261 

Figure 6.1 1-step process schematic 

The breakdown of the estimated costs associated with the 1-Step process is shown 

in Table 6.3.  To determine the influence of methanol:solids ratio, the calculations were 

made using reduced methanol-to-solid ratio at 7.5ml/g, but assuming the same yield. The 

basis for these calculations was also 4260 gallons of biodiesel produced daily. 

224 



www.manaraa.com

 

 

 
 

 
 

    
 

  

     
        
        

    
 

  

     
     

     
  

 
  

      
      

     
    

   
 

  

   
 

  

      
 

  

    
  

  

Costs ($) for 
30ml/g 

Costs ($) for 
7.5ml/g 

Total capital investment cost, TCC 
(FCC + WCC) 

4.93×107 4.48×107 

1. Equipment cost, EC 7.05×106 6.34×106 

Fixed capital cost, FCC 4.29×107 3.90×107 

Working capital, WCC (15% of FCC) 6.43×106 5.85×106 

B. Total annual production cost, TAPC 
(DOC+IOC+DEPC+GE) 

6.82×107 4.45×107 

1. Direct operating costs, DOC 4.75×107 2.79×107 

Labor 7.06×106 

2. Indirect operating costs, IOC 5.10×106 5.02×106 

a. Overhead, packing, storage (60% of 
labor) 

4.24×106 4.24×106 

b. Local taxes (1.5% of FCC) 6.43×105 5.85×105 

c. Insurance (0.5% of FCC) 2.14×105 1.95×105 

3. Depreciation, DEPC (10% of FCC) 4.29×106 3.90×106 

4. General expenses, GE 1.13×107 7.74×106 

a. Administrative expenses (25% of 
overhead) 

1.06×106 1.06×106 

b. Distribution and selling (≈10% of 
TAPC) 

6.82×106 4.45×106 

c. Research and development (≈5% of 
TAPC) 

3.41×106 2.23×106 

Price of biodiesel per gallon to break 
even ($) 

48.00 31.37 

 

 

 

 

 

 

Table 6.3  Calculation of biodiesel breakeven price from the 1-step process  

The results show a biodiesel production break-even price of $48.00 at 30ml/g and 

$31.37 at 7.5ml/g, which is quite expensive if comparing to a petroleum diesel price of 

$3.38/gallon. Marchetti et al (Marchetti and Errazu 2008) who performed an economic 

analysis on biodiesel production from acid oils at a rate of 36,036 ton/yr obtained a 

biodiesel unitary cost of $0.98/kg (or $3.24/gallon). However, the biggest differences that 

exist between these processes occur with the feedstock used and the chemical process. 

Marchetti et al. treated 36,000 tons/year of acid oils (> 90% triglycerides), while this 
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study treats 47,000 ton/year of 90% wet sludge (approximately < 20% saponifiable 

lipids).   

6.2.2 The 2-step process 

A schematic for the 2-step process is shown in Figure 6.2. The same incoming 

mass flow rate of sludge solids as in the 1-step process was used. The 90% wet sludge 

was charged into a stoichiometric PFR at hydrolysis reaction condition of 200 °C. 

Residence time in the hydrolysis reactor was 30 minutes and it was assumed that 10% of 

the entering sludge solids produced in the wastewater were triglycerides that were fully 

converted to free fatty acids. The hydrolysis reactor had a pressure of 7 MPa, which was 

assumed from data in the paper by Moquin et al. (Moquin and Temelli 2008). The 

stoichiometry used in the hydrolysis PFR was: 

78 Sludge + 3 Methanol  3 Fatty acid (FFA) + 1 Glycerol + 2.25 sludge remnant (6.2) 

This was calculated assuming that 78 moles of sludge (113 g/mol) were 

equivalent to 1 mole of saponifiable triglyceride (triolein), which was hydrolyzed to oleic 

acid. The sludge remnant (C138H167O72N39) was added to balance the stoichiometric 

reaction and was assumed to have a molecular weight of ~ 3521g/mol. 
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Figure 6.2 2-step process schematic 

After hydrolysis, the product was run through a phase separation device, where it 

was assumed that 90% of the water in the product stream exit as the top. The bottom 

component was further separated using a centrifuge for solid/oil/fat removal (DC-101). 

Oleic acid was removed from the top section of the centrifuge and combined with 

methanol coming in at a 7:1 methanol:fatty acid ratio for the supercritical esterification 

reaction in the stoichiometric PFR (V-102). The 7:1 ratio was obtained from the 

supercritical esterification study done by Alenezi et al (Alenezi et al. 2010). Complete 

conversion of the FFAs during esterification at 280 °C and a residence time of 30 minutes 

was assumed, also neglecting process losses. 

A splitter was also used to remove 90% of the methanol and water content in the 

esterification product stream which was followed by a series of distillation separations to 
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generate the methanol recycle and purify the diesel product stream. Actual FAME 

produced was also ~ 4260 gallons per day. Table 6.4 illustrates the calculation of the 

biodiesel yield. 

Table 6.4 Calculation of biodiesel yield from the 2-step process 

Test yield of fatty acid from hydrolysis Hourly 

incoming hourly rate of sludge solids, kg/h 5843 

10% of sludge is triglyceride (TG) that is converted to fame, kg/h 584 

1 mole of TG, g/mol 885 

molar flowrate of TG(in sludge), mol/h 660 

Molar rate of FFA produced (Since 1 mol TG = 3 mol FFA), mol/hr 1981 

Mass rate of FFA produced (Since 1 mol TG = 3 mol FFA), kg/hr 560 

Methanol:ffa molar ratio 7 

Incoming methanol flowrate needed for above kg of solids/day, in 
mol/hr 

13865 

Incoming methanol flowrate needed for above kg of solids/day, in 
kg/hr 

444 

Test yield of FAME from esterification Hourly 

incoming hourly molar flow rate of ffa 1981 

Molar rate of FAME produced (Since 1 mol FFA =1 mol FAME), mol/hr 1981 

Mass rate of FAME produced(Since 1 mol FFA =1 mol FAME), kg/hr 587 

Yearly mass production rate of biodiesel, kg/yr 4.70×106 

Yearly volume production rate of biodiesel, gal/yr 1.42×106 

Daily volume production rate of biodiesel, gal/day 4261 

The breakdown of the estimated costs associated with the 2-Step process is shown 

in Table 6.5.  Using the same biodiesel production basis as the 1-step process, the 

breakeven price for the 2-step process at the conditions described was $11.77, which was 

at least 62% lower than either of the 1-step processes analyzed in Table 6.3. This can 

attributed to the smaller reactor and downstream processing equipment needed for 

esterification after most of the water content has been removed upon exiting the 
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Total capital investment cost, TCC (FCC + WCC)a 1.47×107 

1. Equipment cost, EC 2.09×106 

Fixed capital estimate, FCC 1.28×107 

Working capital, WCC (15% of 1.92×106 

FCC) 
B. Total annual production cost, TAPC (DOC+IOC+DEPC+GE)b 1.67×107 

1. Direct operating costs, DOC 8.83×106 

Labor 5.11×106 

2. Indirect operating costs, IOC 3.32×106 

a. Overhead, packing, storage (60% of labor) 3.07×106 

b. Local taxes (1.5% of FCC) 1.92×105 

c. Insurance (0.5% of FCC) 6.39×104 

3. Depreciation, DEPC (10% of 
FCC) 

4. General expenses, GE 
a. Administrative expenses (25% of overhead) 
b. Distribution and selling (≈10% of TPC) 
c. Research and development (≈5% of TPC) 

Price of biodiesel per gallon to break even 

1.28×106 

3.27×106 

7.67×105 

1.67×106 

8.35×105 

11.77 
 

  

 

   

 

hydrolysis stage.  The fast hydrolysis conversion to fatty acids that initially takes place at 

a lower temperature (200 °C), in addition to the lower methanol volume needed for 

esterification, also reduced the energy requirements and thus, the cost. 

Table 6.5 Cost breakdown for 2-step process 

6.2.2.1 Comparison of both processes 

The purpose of the economic analysis was to compare the two methods, not to 

give absolute cost values for each process. Although, the 2-step method has a lower 

breakeven price, it is still not competitive with petroleum diesel price at ~ $3.38 per 

gallon. There are a number of possibilities to improve the economic viability of the 2-step 

process which include: 1) reducing the temperature of the hydrolysis and esterification 

reactors to lower energy requirements, 2) reducing the methanol-to-solid ratio, 3) 

229 



www.manaraa.com

 

 

  

 

 

   

 

 

  

 

  

including heat integration to maximize efficiency, and 4) adding tipping fees from the 

WWTP and from sale of the spent solids. 

For example, the spent solids (~126,000 kg/day) obtained from the process can be 

used as a source of additional revenue if sold (e.g. for composting). It could generate ~ 

$106/day if assuming $11/yd3 as the selling price (SolidWasteDistrict.com 2013). The 

use of one or more of these options could potentially make the biodiesel break-even price 

competitive with petroleum fuels. This can generate a plethora of opportunities globally 

by utilizing a waste material for local, sustainable fuel production that will ultimately 

improve the economic security of any country. 
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CHAPTER VII 

CONCLUSION 

The economic feasibility of using activated sludge from municipal wastewater 

with little or no drying as a feedstock for cost-efficient biodiesel production was 

investigated. This work sought after catalytic and non-catalytic processes that could 

lower the produce biodiesel production cost from activated sludge. 

The research began with the study of the effect of water on tranesterification of 

soybean oil using porous metal oxides. The results demonstrated that there is strong water 

deactivation on these catalysts. Therefore, these catalysts were not recommended for use 

with wet sludge to generate an economic yield of biodiesel. 

In the study of the effect of water on esterification of palmitic acid using zeolites, 

the most active zeolite was the H-ZSM-5 catalyst with silica:alumina ratio of 80. An 

optimum water content of 50 % was identified using this catalyst and a mechanism of 

Langmuir-Hinshelwood form was proposed for moisture  contents tested in the range of 0 

- 70%: 

(7.1)

The mechanism demonstrated that the adsorption of palmitic acid and water 

molecules on two different catalytic sites during the reactions was significant. This 
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demonstrated that at this optimum, fatty acids produced from hydrolyzed sludge do not 

have to be dried completely before reaction, but can be dried partially to 50% and used to 

produce biodiesel. 

For the non-catalytic process, two methods (1-step and 2-step processes) were 

studied and compared in terms of FAME yields and kinetic rate constants. A model 

system of oleaginous yeast - Rhodotorula glutinis (RG) was used to evaluate the 

biodiesel production in a system similar to sludge. The optimization of reaction 

conditions for the 1-step method of direct transesterification of RG gave the optimum as 

280 °C, 30ml/g, producing a FAME yield of 21.5% while at 90% moisture content. 

An economic analysis was used to compare the biodiesel break-even price for the 

2-step method (hydrolysis followed by esterification) with the 1-step method (direct 

transesterification) at this optimum reaction condition. The 2-step method had a break-

even price for biodiesel production at $11.77 compared to $48 for the 1-step process. 

This was attributed to the smaller methanol volume needed for the 2-step process which 

causes smaller reactors and downstream processing equipment to be needed. Although 

the 2-step break-even price is still relatively expensive, some cost savings can be made to 

reduce production costs by making some changes such as: 1) reducing the temperature of 

the hydrolysis and esterification reactors to lower energy requirements, 2) reducing the 

methanol-to-solid ratio, 3) including heat integration to maximize efficiency, and 4) 

adding tipping fees from the WWTP and from sale of the spent solids. 

The results show that the use of the non-catalytic process of supercritical 

methanol with wet sludge for biodiesel production is feasible. Although not yet 

economical, it is promising in terms its high water tolerance, no use of catalysts, no soap 
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products, short reaction times, and relatively easier separation. Further sensitivity 

analyses could enable commercial production of biodiesel at a relatively low cost from 

this readily available, non-food feedstock. And in the case of the 2-step method, the water 

already present in sludge is an advantage for use in hydrolysis. 

7.1 Research Needs 

Further study at the 50% water composition optimum on the esterification with 

zeolite should be done and an economic analysis to compare with the non-catalytic 

process. In addition, additional research on improving the 2-step method by determining 

cost savings in the above-mentioned areas (heat integration, tipping fee revenue, reduced 

methanol volume, and reduced reaction temperatures) will help improve the economics. 
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APPENDIX A 

X-RAY DIFFRACTOGRAMS OF METAL-SUBSTITUTED HYDROTALCITES 
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APPENDIX B 

DERIVATION OF BEST MECHANISM MODEL FOR WET AND DRY FREE 

FATTY ACID ESTERIFICATION 

254 



www.manaraa.com

 

𝐶𝑐𝐶𝑑 (𝐶𝑎𝐶𝑏− ) 
𝑟 = 𝑘 𝐾𝑒 

(1+𝐾𝑎𝐶𝑎+𝐾𝑑𝐶𝑑)2 

 

 

 

  

 

 

 

 

  

   

   

   

 

 

 

 

   

 

 

  𝐶𝑊𝐶𝑣 𝐶𝑊 ∙ 𝑆2 = = 𝐾𝑑𝐶𝑊𝐶𝑣 𝐾𝑑𝑤 
  

 

The mechanism for the best model identified is shown below: 

(B.1) 

In this model and subsequent derivation steps, the subscripts: a, b, c, and d 

represent the compounds: palmitic acid (PA), methanol (M), methyl palmitate (MP), and 

water (W) respectively. 

Based on the mechanism discussed in Chapter 4, with the adsorption, surface 

reaction and desorption steps in consecutive order below (Equations B.1 -B. 3) 

(B.2) 

(B.3) 

(B.4) 

Derivation: 

It was assumed that the surface reaction step is rate-limiting. 

The concentration of palmitic acid (PA) adsorbed onto the catalytic site, CPA·S1, 

in the adsorption reaction is given by: 

𝐶𝑃𝐴 ∙ 𝑆1 = 𝐾𝑎𝐶𝑃𝐴𝐶𝑣 (B.5) 

The concentration of water (W) adsorbed onto the catalytic site, CW·S2, in the 

adsorption reaction is given by: 

(B.6) 

The rate of the surface reaction, rs, can be expressed as: 
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𝐶𝑀𝑃𝐶𝑊∙𝑆2𝐶𝑣 𝑟𝑠 = 𝑘𝑠𝐶𝑃𝐴 ∙ 𝑆1𝐶𝑀𝐶𝑣 − (B.7) 
𝐾𝑠 

Where Cv represents the concentration of vacant sites; Ka, Ks, and Kdw represent 

the equilibrium constants for the adsorption, surface reaction, and desorption steps. 

To simplify Equation 5 to a non-fraction, a new term Kd was defined, which is the 

inverse of the Kdw term that is the equilibrium constant for the desorption of water. Thus, 

Kd represents the equilibrium constant for the adsorption of water in Equation 3. 

Plugging Equations 4 and 5 into Equation 6, 

2 𝐾𝑑𝐶𝑀𝑃𝐶𝑊𝐶𝑣
2 

𝑟𝑠 = 𝑘𝑠(𝐾𝑎𝐶𝑃𝐴𝐶𝑀𝐶𝑣 − ) (B.8) 
𝐾𝑠 

The total concentration of sites, Ct, is: 

𝐶𝑡 = 𝐶𝑣 + 𝐶𝑃𝐴 ∙ 𝑆1 + 𝐶𝑊 ∙ 𝑆2 (B.9) 

𝐶𝑡 = 𝐶𝑣(1 + 𝐾𝑎𝐶𝑃𝐴 + 𝐾𝑑𝐶𝑊) (B.10) 

Therefore, 

2 𝐶𝑡
2 

𝐶𝑣 = (B.11) 
(1+𝐾𝑎𝐶𝑃𝐴+𝐾𝑑𝐶𝑊)2 

Plugging Equation 10 into Equation 7: 

𝐾𝑑𝐶𝑀𝑃𝐶𝑊 𝑘𝑠𝐶𝑡
2(𝐾𝑎𝐶𝑃𝐴𝐶𝑀− 

𝐾𝑠 
) 

𝑟𝑠 = (B.12) 
(1+𝐾𝑎𝐶𝑃𝐴+𝐾𝑑𝐶𝑊)2 

An overall equilibrium constant, Ke, is defined as: 

𝐾𝑎∗𝐾𝑠 𝐾𝑒 = 𝐾𝑎 ∗ 𝐾𝑠 ∗ 𝐾𝑑𝑤 = (B.13) 
𝐾𝑑 

Therefore, substituting Equation 12 into Equation 11 produces: 
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𝑟 = 𝑘 𝐾𝑒 
(1+𝐾𝑎𝐶𝑎+𝐾𝑑𝐶𝑑)2 

   
𝐶𝑀𝑃𝐶𝑊 𝑘𝑠𝐾𝑎𝐶𝑡

2(𝐶𝑃𝐴𝐶𝑀− 
𝐾𝑒 

) 
𝑟𝑠 = 

(1+𝐾𝑎𝐶𝑃𝐴+𝐾𝑑𝐶𝑊)2 

 

 

  

 

   

 

  

 

 

 

(B.14) 

Simplifying, and defining an apparent rate constant, k, as: 

2𝑘 = 𝑘𝑠𝐾𝑎𝐶𝑡 (B.15) 

The final model for the reaction rate becomes: 

(B.16) 
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APPENDIX C 

ADDITIONAL EQUIPMENT USED FOR SUPERCRITICAL METHANOL 

EXPERIMENTS 
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Turbovap 

Figure C.1 TurboVap LV 

(Caliper Life Sciences, Hopkinton, MA, U.S.A.) 

Rotavap 

Figure C.2 Büchi R-205 rotary evaporato 

(Brinkmann Instruments, Inc., Westbury, NY, U.S.A) 
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Temperature controller 

Figure C.3 Benchtop temperature controller for sand bath 

(Omega Engineering, Stamford, Connecticut, U.S.A.) 

Datalogger 

. 

Figure C.4 Datalogger used to record internal probe and sand bath temperature 
changes 

(Omega Engineering, Stamford, Connecticut, U.S.A.) 
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Dessicator 

Figure C.5 Dessicator used for holding catalysts till use 

(Fisher Scientific, Pittsburgh, PA, USA) 

Air filters 

Figure C.6 Air filters upstream of sand bath 

Changed airfilter crystals when pink, regenerated in oven for 1.5hr at 120°C 
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Platform shaker 

Figure C.7 Platform shaker used during Bligh-Dyer extraction 

(New Brunswick Scientific Co., Edison, NJ, USA) 

262 



www.manaraa.com

 

 

 

 

APPENDIX D 

ADDITIONAL DATA ON ECONOMIC ANALYSIS 
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Figure D.1 One-step plant schematic 

Figure D.2 Two-step plant schematic 
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Table D.1 Superpro Designer ® software output for 1-step plant simulation at 30ml/g 
methanol-to-solid ratio 

2. MAJOR EQUIPMENT SPECIFICATION AND FOB COST (2012 prices) 
Quantity/ 
Standby/ 
Staggered 

Name Description Unit Cost ($) Cost ($) 

1/0 MF-101 Microfilter 82,000 82,000 
Membrane Area = 36.53 m2 

1/0 PM-101 Centrifugal Pump 9,000 9,000 
Power = 0.20 kW 

1/0 PM-102 Centrifugal Pump 41,000 41,000 
Power = 6.96 kW 

1/0 PM-103 Centrifugal Pump 9,000 9,000 
Power = 0.09 kW 

1/0 PM-104 Centrifugal Pump 9,000 9,000 
Power = 0.09 kW 

1/0 C-102 Distillation Column 76,000 76,000 
Column Volume = 75.29 gal 

1/0 CSP-101 Component Splitter 0 0 
Size/Capacity = 195680.63 kg/h 

1/0 HX-101 Heat Exchanger 1,000 1,000 
Heat Exchange Area = 0.20 m2 

1/0 HX-103 Heat Exchanger 12,000 12,000 
Heat Exchange Area = 33.35 m2 

6/0 C-103 Distillation Column 79,000 474,000 
Column Volume = 6510.86 gal 

2/0 C-101 Distillation Column 146,000 292,000 
Column Volume = 8690.05 gal 

1/0 C-104 Distillation Column 164,000 164,000 
Column Volume = 12224.17 gal 

1/0 MF-102 Microfilter 82,000 82,000 
Membrane Area = 36.53 m2 

1/0 HX-102 Heat Exchanger 11,000 11,000 
Heat Exchange Area = 28.89 m2 

1/0 PM-105 Centrifugal Pump 68,000 68,000 
Power = 21.39 kW 

1/0 MX-101 Mixer 0 0 
Size/Capacity = 195704.37 kg/h 

1/0 MX-102 Mixer 0 0 
Size/Capacity = 135933.37 kg/h 

1/0 V-101 Plug Flow Reactor 4,228,000 4,228,000 
Vessel Volume = 16633.91 gal 

1/0 MF-103 Microfilter 82,000 82,000 
Membrane Area = 36.52 m2 
Unlisted Equipment 1,409,000 

TOTAL 7,045,000 

Table D.1 (continued) 

3. FIXED CAPITAL ESTIMATE SUMMARY (2012 prices in $) 
3A. Total Plant Direct Cost (TPDC) (physical cost) 
1. Equipment Purchase Cost 7,045,000 
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 2.  Installation  3,021,000 
 3.  Process  Piping  2,466,000 
 4.  Instrumentation  2,818,000 
 5.  Insulation  211,000 
 6.  Electrical  705,000 
 7.  Buildings  3,170,000 
 8.  Yard  Improvement  1,057,000 
 9.  Auxiliary  Facilities  2,818,000 

 TPDC  23,312,000 
  

3B. Total Plant Indirect Cost (TPIC)  
 10.  Engineering  5,828,000 
 11.  Construction  8,159,000 

 TPIC  13,987,000 
  

3C. Total Plant Cost (TPC = TPDC+TPIC)  
 TPC  37,299,000 

  

 3D. Contractor's Fee & Contingency (CFC) 
 12.  Contractor's  Fee  1,865,000 
 13.  Contingency  3,730,000 

 CFC =  12+13  5,595,000 
  

3E. Direct Fixed Capital Cost (DFC = TPC+CFC)  
 DFC  42,894,000 

  

4. LABOR COST   -  PROCESS SUMMARY 
 Unit Cost  Annual Amount  Annual Cost  Labor Type  %  ($/h)  (h)   ($)  

 Operator  69.00  102,394  7,065,000  100.00 
 TOTAL  102,394  7,065,000  100.00 

  

5.  RAW MATERIALS COST   -  PROCESS SUMMARY  
 Unit Cost  Annual Amount  Annual Cost 

 Bulk Raw Material  % ($/kg)  (kg)  ($)  
 Wet  sludge  0.000 462,773,520   0  0.00 

 Methanol  0.482  10,612,800  5,115,000  100.00 
 TOTAL 473,386,320   5,115,000  100.00 

  

  

267 



www.manaraa.com

 

 

 

6. VARIOUS CONSUMABLES COST (2012  prices)  -  PROCESS SUMMARY  
 Consumable  Units Cost 

 ($) 
 Annual 
 Amount 

 Annual Cost 
($)   % 

 Dft  Membrane  400.000  868     347,000  100.00 
 m2 

 TOTAL  347,000  100.00 
  

7.  WASTE TREATMENT/DISPOSAL COST  (2012  prices)  -  PROCESS 
 SUMMARY 

 THE  TOTAL  WASTE  TREATMENT/DISPOSAL  COST IS ZERO.  
  

8.  UTILITIES COST (2012 prices)  - PROCESS SUMMARY  
 Utility  Annual Amount Reference Units   Annual Cost 

 ($)   % 

 Electricity  501,279  kWh  50,128  0.19 
 Steam  1,649,286,431  kg  6,927,003  26.81 
 Cooling  Water  114,433,280,695  kg  11,443,328  44.28 

 Chilled  Water  3,923,441,831  kg  1,569,377  6.07 
 B's  VHPsteam  585,116,553  kg  5,851,166  22.64 

 TOTAL  25,841,001  100.00 
  

  

9. ANNUAL  OPERATING COST (2012 prices)  - PROCESS SUMMARY  
 Cost Item $   % 

 Raw  Materials  5,115,000  10.77 
Labor-Dependent   7,065,000  14.87 

 Facility-Dependent  8,070,000  16.99 
 Laboratory/QC/QA  1,060,000  2.23 

 Consumables  347,000  0.73 
 Waste  Treatment/Disposal  0  0.00 
 Utilities  25,841,000  54.40 

 Transportation  0  0.00 
 Miscellaneous  0  0.00 

 Advertising/Selling  0  0.00 
 Running  Royalties  0  0.00 

 Failed  Product  Disposal  0  0.00 
 TOTAL  47,499,000  100.00 

 

  
 

  
 

Table D.1 (continued) 

Table D.2 Superpro Designer ® software output for 1-step plant simulation at 7.5ml/g 
methanol-to-solid ratio 

2. MAJOR EQUIPMENT SPECIFICATION AND FOB COST (2012 prices) 
Quantity/ 
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Standby/ Name Description Unit Cost ($) Cost ($) 
Staggered 

1/0 MF-101 Microfilter 82,000 82,000 
Membrane Area = 36.53 m2 

1/0 PM-101 Centrifugal Pump 9,000 9,000 
Power = 0.05 kW 

1/0 PM-102 Centrifugal Pump 41,000 41,000 
Power = 6.96 kW 

1/0 PM-103 Centrifugal Pump 9,000 9,000 
Power = 0.09 kW 

1/0 PM-104 Centrifugal Pump 9,000 9,000 
Power = 0.09 kW 

1/0 C-102 Distillation Column 76,000 76,000 
Column Volume = 74.50 gal 

1/0 CSP-101 Component Splitter 0 0 
Size/Capacity = 89879.80 kg/h 

1/0 HX-101 Heat Exchanger 1,000 1,000 
Heat Exchange Area = 0.05 m2 

1/0 HX-103 Heat Exchanger 12,000 12,000 
Heat Exchange Area = 33.35 m2 

2/0 C-103 Distillation Column 73,000 146,000 
Column Volume = 6295.12 gal 

1/0 C-101 Distillation Column 151,000 151,000 
Column Volume = 9423.98 gal 

1/0 C-104 Distillation Column 102,000 102,000 
Column Volume = 4351.78 gal 

1/0 MF-102 Microfilter 82,000 82,000 
Membrane Area = 36.52 m2 

1/0 HX-102 Heat Exchanger 4,000 4,000 
Heat Exchange Area = 6.66 m2 

1/0 PM-105 Centrifugal Pump 36,000 36,000 
Power = 4.88 kW 

1/0 MX-101 Mixer 0 0 
Size/Capacity = 89876.56 kg/h 

1/0 MX-102 Mixer 0 0 
Size/Capacity = 31110.56 kg/h 

1/0 V-101 Plug Flow Reactor 4,228,000 4,228,000 
Vessel Volume = 16703.27 gal 

1/0 MF-103 Microfilter 82,000 82,000 
Membrane Area = 36.51 m2 
Unlisted Equipment 1,267,000 

TOTAL 6,337,000 

 

   
  

3. FIXED CAPITAL ESTIMATE SUMMARY (2012 prices in $) 
3A. Total Plant Direct Cost (TPDC) (physical cost) 
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 1.  Equipment  Purchase  Cost  6,337,000 
 2.  Installation  2,931,000 
 3.  Process  Piping  2,218,000 
 4.  Instrumentation  2,535,000 
 5.  Insulation  190,000 
 6.  Electrical  634,000 
 7.  Buildings  2,852,000 
 8.  Yard  Improvement  951,000 
 9.  Auxiliary  Facilities  2,535,000 

 TPDC  21,182,000 
  

3B. Total Plant Indirect Cost (TPIC)  
 10.  Engineering  5,296,000 
 11.  Construction  7,414,000 

 TPIC  12,709,000 
  

3C. Total Plant Cost (TPC = TPDC+TPIC)  
 TPC  33,892,000 

  

 3D. Contractor's Fee & Contingency (CFC) 
 12.  Contractor's  Fee  1,695,000 
 13.  Contingency  3,389,000 

 CFC =  12+13  5,084,000 
  

3E. Direct Fixed Capital Cost (DFC = TPC+CFC)  
 DFC  38,975,000 

  

4. LABOR COST   -  PROCESS SUMMARY 

 Labor Type 
 Unit Cost 

  ($/h) 
 Annual Amount 

 (h)  
 Annual Cost 

 ($)   % 

 Operator  69.00  102,394  7,065,000  100.00 
 TOTAL  102,394  7,065,000  100.00 
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5.  RAW MATERIALS COST   -  PROCESS SUMMARY  

 Bulk Raw Material 
 Unit Cost 
 ($/kg) 

 Annual Amount 
 (kg) 

 Annual Cost 
 ($)   % 

 Wet  sludge  0.000  462,773,520  0  0.00 
 Methanol  0.482  2,653,200  1,279,000  100.00 

 TOTAL  465,426,720  1,279,000  100.00 
  

6. VARIOUS CONSUMABLES COST (2012  prices)  -  PROCESS SUMMARY  

 Consumable 
 Units Cost 
 ($) 

 Annual 
 Amount 

 Annual Cost 
($)   %

 Dft  Membrane  400.000  868     347,000  100.00 
 m2 

 TOTAL  347,000  100.00 
  

7.  WASTE TREATMENT/DISPOSAL COST  (2012  prices)  -  PROCESS 
 SUMMARY 

 THE  TOTAL  WASTE  TREATMENT/DISPOSAL  COST IS ZERO.  
  

8.  UTILITIES COST (2012 prices)  - PROCESS SUMMARY  

 Utility  Annual Amount Reference Units  
 Annual Cost 

 ($)   %

 Electricity  336,357  kWh  33,636  0.31 
 Steam  707,950,140  kg  2,973,391  27.50 
 Cooling  Water  45,171,099,808  kg  4,517,110  41.77 

 Chilled  Water  904,732,945  kg  361,893  3.35 
 B's  VHPsteam  292,757,881  kg  2,927,579  27.07 

 TOTAL  10,813,608  100.00 
  

  

 

  

Table D.2 (continued) 
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9. ANNUAL OPERATING COST (2012 prices) - PROCESS SUMMARY 
Cost Item $ % 
Raw Materials 1,279,000 4.58 
Labor-Dependent 7,065,000 25.33 
Facility-Dependent 7,328,000 26.27 
Laboratory/QC/QA 1,060,000 3.80 
Consumables 347,000 1.24 
Waste Treatment/Disposal 0 0.00 
Utilities 10,814,000 38.77 
Transportation 0 0.00 
Miscellaneous 0 0.00 
Advertising/Selling 0 0.00 
Running Royalties 0 0.00 
Failed Product Disposal 0 0.00 
TOTAL 27,892,000 100.00 

  

  
 
 

 
    

     
   

      
      

      
   

     
   

     
   

      
      

     
   

      
    

      
    

      
   

      
   

 

  
Quantity/ 
Standby/ Name Description Unit Cost ($) Cost ($) 
Staggered 

1/0 PM-102 Centrifugal Pump 41,000 41,000 
Power = 6.96 kW 

1/0 HX-101 Heat Exchanger 11,000 11,000 
Heat Exchange Area = 29.85 m2 

1/0 DC-101 Decanter Centrifuge 270,000 270,000 
Throughput = 206.44 gal/h 

1/0 PM-101 Centrifugal Pump 9,000 9,000 
Power = 0.01 kW 

1/0 PM-103 Centrifugal Pump 9,000 9,000 
Power = 0.01 kW 

1/0 HX-103 Heat Exchanger 1,000 1,000 
Heat Exchange Area = 0.01 m2 

1/0 PM-104 Centrifugal Pump 9,000 9,000 
Power = 0.08 kW 

1/0 C-101 Distillation Column 52,000 52,000 
Column Volume = 10.23 gal 

1/0 C-103 Distillation Column 123,000 123,000 
Column Volume = 5663.68 gal 

1/0 CSP-102 Component Splitter 0 0 
Size/Capacity = 58426.81 kg/h 

1/0 CSP-101 Component Splitter 0 0 
Size/Capacity = 1008.34 kg/h 

Table D.3 (continued) 

Table D.2 (continued) 

Table D.3 Superpro Designer ® software output for 2-step plant simulation 

2. MAJOR EQUIPMENT SPECIFICATION AND FOB COST (2012 prices)
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 1/0 C-102   Distillation  Column  56,000  56,000 
 Column Volume  =  244.91  gal 

 1/0  V-102  Plug  Flow  Reactor  73,000  73,000 
 Vessel Volume =  97.13  gal 

 1/0 HX-102   Heat  Exchanger  1,000  1,000 
 Heat  Exchange  Area  =  0.06  m2 

 1/0  PM-105  Centrifugal Pump  9,000  9,000 
 Power =  0.04 kW  

 1/0 MX-101   Mixer  0  0 
 Size/Capacity =  1008.33  kg/h 

 1/0  V-101  Plug  Flow  Reactor  1,009,000  1,009,000 
 Vessel Volume =  8303.72  gal 

 Unlisted  Equipment  418,000 
 TOTAL  2,091,000 

  

3. FIXED CAPITAL ESTIMATE SUMMARY (2012   prices in  $) 
 3A. Total Plant Direct Cost (TPDC) (physical  cost) 

 1.  Equipment  Purchase  Cost  2,091,000 
 2.  Installation  930,000 
 3.  Process  Piping  732,000 
 4.  Instrumentation  836,000 
 5.  Insulation  63,000 
 6.  Electrical  209,000 
 7.  Buildings  941,000 
 8.  Yard  Improvement  314,000 
 9.  Auxiliary  Facilities  836,000 

 TPDC  6,951,000 
  

3B. Total Plant Indirect Cost (TPIC)  
 10.  Engineering  1,738,000 
 11.  Construction  2,433,000 

 TPIC  4,170,000 
  

3C. Total Plant Cost (TPC = TPDC+TPIC)  
 TPC  11,121,000 

  

 3D. Contractor's Fee & Contingency (CFC) 
 12.  Contractor's  Fee  556,000 
 13.  Contingency  1,112,000 

 CFC =  12+13  1,668,000 
  

3E. Direct Fixed Capital Cost (DFC = TPC+CFC)  
 DFC  12,789,000 

 

 Table D.3 (continued) 
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4. LABOR COST   -  PROCESS SUMMARY 

 Labor Type 
 Unit Cost 

  ($/h) 
 Annual  Amount 

 (h)  
 Annual Cost 

 ($)   % 

 Operator  69.00  74,109  5,113,000  100.00 
 TOTAL  74,109  5,113,000  100.00 

  

5.  RAW MATERIALS COST   -  PROCESS SUMMARY  

 Bulk Raw Material 
 Unit Cost 
 ($/kg) 

 Annual Amount 
 (kg) 

 Annual Cost 
 ($)   %

 Wet  sludge  0.000  462,773,520  0  0.00 
 Methanol  0.482  752,400  363,000  100.00 

 TOTAL  463,525,920  363,000  100.00 
  

6. VARIOUS CONSUMABLES COST (2012  prices)  -  PROCESS SUMMARY  
 THE  CONSUMABLES  COST IS   ZERO. 

  

7.  WASTE TREATMENT/DISPOSAL COST  (2012  prices)  -  PROCESS 
 SUMMARY 

 THE  TOTAL  WASTE  TREATMENT/DISPOSAL COST IS  ZERO.  
  

8.  UTILITIES COST (2012 prices)  - PROCESS SUMMARY  

 Utility  Annual Amount Reference Units  
 Annual Cost 

 ($)   % 

 Electricity  76,959  kWh  7,696  0.30 
 Steam  169,996,326  kg  713,985  27.57 
 Cooling  Water  6,489,590,724  kg  648,959  25.06 

 Chilled  Water  8,095,712  kg  3,238  0.13 
 B's  VHPsteam  121,583,764  kg  1,215,838  46.95 

 TOTAL  2,589,715  100.00 
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Table D.3 (continued) 

9. ANNUAL OPERATING COST (2012 prices) - PROCESS SUMMARY 
Cost Item $ % 
Raw Materials 363,000 3.23 
Labor-Dependent 5,113,000 45.50 
Facility-Dependent 2,405,000 21.40 
Laboratory/QC/QA 767,000 6.83 
Consumables 0 0.00 
Waste Treatment/Disposal 0 0.00 
Utilities 2,590,000 23.04 
Transportation 0 0.00 
Miscellaneous 0 0.00 
Advertising/Selling 0 0.00 
Running Royalties 0 0.00 
Failed Product Disposal 0 0.00 
TOTAL 11,238,000 100.00 
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